dc.creatorRonceros Rivas, Julio R.
dc.creatorPimenta, Amilcar Porto
dc.creatorLessa, Jusceline Sumara
dc.creatorRonceros Rivas, Gustavo A.
dc.date.accessioned2022-08-07T22:50:32Z
dc.date.accessioned2024-05-07T03:08:54Z
dc.date.available2022-08-07T22:50:32Z
dc.date.available2024-05-07T03:08:54Z
dc.date.created2022-08-07T22:50:32Z
dc.date.issued2022-06-01
dc.identifier10.1016/j.jppr.2022.02.007
dc.identifierhttp://hdl.handle.net/10757/660553
dc.identifier2212540X
dc.identifierPropulsion and Power Research
dc.identifier2-s2.0-85133242356
dc.identifierSCOPUS_ID:85133242356
dc.identifierS2212540X22000360
dc.identifier0000 0001 2196 144X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9329475
dc.description.abstractThis study discusses the development of a mathematical model that is capable of predicting the drop size mean diameter of the spray generated by a pressure swirl atomizer, considering the effects of the liquid's viscosity and the geometrical parameters of this type of injector, as well as the angle of incidence of the inlet channels (ψ and β) and atomization parameters (k, ϰ), obtained from hyperbolic relations. Additionally, this model investigates the phenomena of rupture and stability that are observed in the conical liquid film, in which the importance of a new geometrical parameter of atomization, “ϰ”, which immediately influences the drop size diameter of the spray, should be highlighted. The results that are obtained using this model are compared with analytical results of Couto, Wang and Lefebvre, Jasuja, Radcliffe and Lefebvre, experimental results and numerics (Hollow cone atomization model), using the Ansys Fluent software for the validation and consistency of the model proposed in Rivas (2015). This model yields good approximations as compared to that yielded using other alternative mathematical models, demonstrating that the new atomization geometric parameter “ϰ” is an “adjustment” factor that exhibits considerable significance while designing pressure swirl atomizers according to the required SMD. Furthermore, this model is easy to use, with reliable results, and has the advantage of saving computational time.
dc.languageeng
dc.publisherElsevier Ltd
dc.relationhttps://www.sciencedirect.com/science/article/pii/S2212540X22000360?via%3Dihub
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.sourceUniversidad Peruana de Ciencias Aplicadas (UPC)
dc.sourceRepositorio Academico - UPC
dc.sourcePropulsion and Power Research
dc.source11
dc.source2
dc.source240
dc.source252
dc.subjectAtomization geometric parameter ϰ
dc.subjectAtomization mathematical model
dc.subjectDrop size mean diameter
dc.subjectHalf spray angle
dc.subjectHelix angle
dc.subjectPressure-swirl atomizer
dc.titleAn improved theoretical formulation for Sauter mean diameter of pressure-swirl atomizers using geometrical parameters of atomization
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución