dc.creatorFlores-Osorio, Alejandro Isaías
dc.creatorLobo-da-Costa, Nielce Meneguelo
dc.creatorEspejo-Peña, Dennis Alberto
dc.creatorCabracancha-Montesinos, Lenin Rolando
dc.date.accessioned2022-01-28T22:40:55Z
dc.date.accessioned2024-05-07T02:39:10Z
dc.date.available2022-01-28T22:40:55Z
dc.date.available2024-05-07T02:39:10Z
dc.date.created2022-01-28T22:40:55Z
dc.date.issued2022-01-01
dc.identifier21903018
dc.identifier10.1007/978-981-16-5063-5_28
dc.identifierhttp://hdl.handle.net/10757/658719
dc.identifier21903026
dc.identifierSmart Innovation, Systems and Technologies
dc.identifier2-s2.0-85120528041
dc.identifierSCOPUS_ID:85120528041
dc.identifier0000 0001 2196 144X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9327536
dc.description.abstractThe present investigation focuses on the mathematical concept of convexity, as the main tool for the graphic construction of bounded surfaces explicitly and implicitly described, as well as the construction of unconventional solids using GeoGebra. Two cases are presented in which the importance of the concept of convexity is highlighted, in the first situation the convexity is used in the argument of the surface command together with the curves that delimit it to graph a bounded surface, while in the second situation the convexity is evidenced by expressing the coordinates of the surface in parametric form. On the other hand, the 3D graphic view combined with the GeoGebra AR tool allows one to visualize, manipulate, understand and improve the abstraction of mathematical objects that are built in three-dimensional space in a dynamic and friendly environment. These constructions in three-dimensional space that are complex when sketching them with pencil and paper are easier when linking the mathematical definitions with free software such as GeoGebra.
dc.languageeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relationhttps://link.springer.com/chapter/10.1007/978-981-16-5063-5_28
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.sourceUniversidad Peruana de Ciencias Aplicadas (UPC)
dc.sourceRepositorio Académico - UPC
dc.sourceSmart Innovation, Systems and Technologies
dc.source256
dc.source343
dc.source353
dc.subjectBounded surfaces
dc.subjectConvexity
dc.subjectGeoGebra AR
dc.subjectUnconventional solids
dc.titleConvexity in the Design of Bounded Surfaces and Unconventional Solids Using GeoGebra AR
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución