dc.creatorSicha Pillaca, Juan Carlos
dc.creatorMolina Ramirez, Alexander
dc.creatorVasquez, Victor Arana
dc.date.accessioned2021-06-08T13:21:47Z
dc.date.accessioned2024-05-07T02:11:07Z
dc.date.available2021-06-08T13:21:47Z
dc.date.available2024-05-07T02:11:07Z
dc.date.created2021-06-08T13:21:47Z
dc.date.issued2020-09-30
dc.identifier10.1109/CONIITI51147.2020.9240404
dc.identifierhttp://hdl.handle.net/10757/656414
dc.identifier2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
dc.identifier2-s2.0-85096593247
dc.identifierSCOPUS_ID:85096593247
dc.identifier0000 0001 2196 144X
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9325439
dc.description.abstractThe aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to operate and allows to reduce the time and cost of seismic designs. To generate the artificial neural network, training models (traditional confined masonry designs) are used to identify the input and output parameters. From this, the final architecture and activation functions are defined for each layer of the ANN. Finally, ANN training is carried out using the backpropagation algorithm to obtain the matrix of weights and thresholds that allow the network to operate and provide preliminary structural designs with a 10% margin of error, with respect to the traditional design, in the dimensions and reinforcements of the structural elements.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttps://ieeexplore.ieee.org/document/9240404
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.source2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
dc.subjectartificial intelligence
dc.subjectartificial neural networks
dc.subjectconfined masonry
dc.subjectstructural design
dc.titleStructural design of confined masonry buildings using artificial neural networks
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución