dc.creatorMauricio-Sanchez, David
dc.creatorde Andrade Lopes, Alneu
dc.creatorhiguihara Juarez Pedro Nelson
dc.date.accessioned2018-01-16T20:34:41Z
dc.date.accessioned2024-05-06T19:48:00Z
dc.date.available2018-01-16T20:34:41Z
dc.date.available2024-05-06T19:48:00Z
dc.date.created2018-01-16T20:34:41Z
dc.date.issued2017-08
dc.identifier10.1109/INTERCON.2017.8079723
dc.identifierhttp://hdl.handle.net/10757/622536
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9292116
dc.description.abstractProtein fold recognition is an important task in the biological area. Different machine learning methods such as multiclass classifiers, one-vs-all and ensemble nested dichotomies were applied to this task and, in most of the cases, multiclass approaches were used. In this paper, we compare classifiers organized in tree structures to classify folds. We used a benchmark dataset containing 125 features to predict folds, comparing different supervised methods and achieving 54% of accuracy. An approach related to tree-structure of classifiers obtained better results in comparison with a hierarchical approach.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttp://ieeexplore.ieee.org/document/8079723/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectLearning systems
dc.subjectProtein folding
dc.subjectProteins
dc.subjectTrees (mathematics)
dc.subjectBenchmark datasets
dc.subjectHierarchical approach
dc.subjectMachine learning methods
dc.subjectMulti-class classifier
dc.subjectNested dichotomies
dc.subjectProtein fold recognition
dc.subjectSupervised methods
dc.subjectTree structures
dc.titleApproaches based on tree-structures classifiers to protein fold prediction
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución