dc.contributorHermoza Novoa, Mónica Mercedes
dc.contributor
dc.contributor
dc.creatorRapizza Alvarez, Jael Antonella
dc.date.accessioned2015-11-20T01:22:29Z
dc.date.accessioned2024-05-06T19:21:46Z
dc.date.available2015-11-20T01:22:29Z
dc.date.available2024-05-06T19:21:46Z
dc.date.created2015-11-20T01:22:29Z
dc.date.issued19/11/2015
dc.identifierRapizza Alvarez JA. Comparación in vitro de la microdureza superficial de la resina compuesta Tetric® N-Ceram Bulk Fill y SonicfillTM según profundidad de fotocurado [Internet]. Universidad Peruana de Ciencias Aplicadas - UPC; 2015 [cited 2016 May 5]. Available from: http://repositorioacademico.upc.edu.pe/upc/handle/10757/582421
dc.identifierhttp://hdl.handle.net/10757/582421
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9289735
dc.description.abstractObjective: To compare in vitro microhardness of resin Tetric® N - Ceram Bulk Fill and SonicFill™ resin as curing depth. Materials and methods: The studio was experimental in vitro. 32 specimens were divided into 4 groups performed: Tetric® N-Ceram Bulk Fill to 2mm thick, Tetric® N-Ceram Bulk Fill to 4mm thick, SonicFill ™ to 2mm thick and SonicFill ™ to 4mm thick. Were prepared in a 6x2x4mm metal matrix thickness, which were irradiated from the top surface. All specimens were stored in a stove at 37 ° C for 24 hours before initial measurement. The Vickers hardness was measured according to the depth of the test bodies from the top and bottom surfaces of the resin block of the four groups mentioned above. Data were analyzed with Shapiro Wilk and Student's t test. Results: The SonicFill ™ resin at 2 and 4 mm in depth was increased microhardness average 74.75 + 3.38 kg/mm2 and 72.65 + 1.93 kg/mm2 respectively compared to the Tetric® N-Ceram Bulk Fill resin. Furthermore microhardness Tetric® N-Ceram Bulk Fill, SonicFill™ and the upper surface is greater with an average of 60.87 + 2.53 kg/mm2 and 74.75 + 3.38 kg/mm2 in the lower surface with a mean of 51.25 + 1.95 kg/mm2 and 71.37 + 2.68 kg/mm2. Conclusions: Statistically significant differences were found Tetric® N-Ceram Bulk Fill and SonicFill ™ at 2 and 4mm depth, giving greater surface microhardness in SonicFill ™ to 2mm and 4mm depth at the top surface.
dc.description.abstractObjetivo: comparar in vitro la microdureza superficial de la resina Tetric® N-Ceram Bulk Fill y la resina SonicFill™, según profundidad de fotocurado. Materiales y métodos: el estudio fue experimental in vitro. Se realizaron 32 cuerpos de prueba divididos en 4 grupos: Tetric® N-Ceram Bulk Fill a 2mm de espesor, Tetric® N-Ceram Bulk Fill a 4mm de espesor, SonicFill™ a 2mm de espesor, SonicFill™ a 4mm de espesor. Se prepararon en matrices metálicas de 6x2x4 mm de espesor, los cuales fueron irradiados desde la superficie más superficial. Todos los especímenes se almacenaron en una estufa a 37◦C durante 24 horas, antes de la medición. La dureza Vickers se midió en función al espesor del material por la superficie superior e inferior del cuerpo de prueba, de los cuatro grupos antes mencionados. Los datos se analizaron con las pruebas de Shapiro Wilk y t de Student. Resultados: la resina SonicFill™ a los 2 y 4mm de espesor tuvo mayor microdureza superficial con una media de74.75+3.38kg/mm2 y 72.65+1.93kg/mm2 respectivamente a comparación de la resina Tetric® N-Ceram Bulk Fill. Por otro lado la microdureza superficial de la resina Tetric® N-Ceram Bulk Fill y SonicFill™en la superficie superior es mayor con una media de 60.87+2.53kg/mm2 y 74.75+3.38kg/mm2 que en la superficie inferior con una media de 51.25+1.95kg/mm2 y 71.37+2.68 kg/mm2. Conclusiones: se encontraron diferencias estadísticamente significativas al comparar las resinas Tetric® N-Ceram Bulk Fill y SonicFill™ a los 2mm y 4mm de profundidad, con mayor microdureza superficial en la resina SonicFill™a los 2mm y 4mm de profundidad en la superficie superior.
dc.languagespa
dc.publisherUniversidad Peruana de Ciencias Aplicadas (UPC)
dc.publisherPE
dc.relation1. Bowen RL. Properties of a silica-reinforced polymer for dental restorations. J Amer Dent Assoc. 1963;28(5):57-64 2. Fan P, Schumacher R, Azzolin , Geary R, Eichmiller F. Curing-light intensity and depth of cure of resin-based composites tested according to international standards. J Am Dent Assoc. 2002; 133(4):429-34. 3. Ruyter IE, Oysaed H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand.1982; 40:179-92. 4. Alrahlaha C, Silikasa N, Wattsa D. Post-cure depth of cure of bulk fill dentalresin-composite. Dent Mater. 2014; 30: 49-54. 5. Kovarik RE, Ergle JW. Fracture toughness of posteriorcomposite resins fabricated by incremental layering. J ProstDent. 1993; 69:557–60. 6. Brito V. Resina composta com baixa contração de polimerização: relato de caso clínico. Rev Dent Press Estet. 2011; 8(3):48-53. 7. Finana L, Palin W, Moskwa N, McGinleya E, Fleminga G. The influence of irradiation potential on the degree of conversion and mechanical properties of two Bulk-fill flowable RBC base materials. Dent Mater. 2013; 29: 906-12. 8.Pontons J. Avaliação do desgaste por escovacão, in vitro, de uma resina composta fotopolimerizada por lampada halógena, em dois diferentes tempos. [Tesis de maestría].Brazil: Universidade de São Paulo; 2009. 9. Anusavice K. Phillips Ciencia de los Materiales Dentales. 11a ed. Madrid: Elsevier; 2004. 854p. 10. Lutz F, Phillips R. Classification and evaluation of composite resin systems. J Prosthet Dent. 1983; 50(4):480-8. 11. Lang B, Jaarda M, Wang R. Filler particle size and composite resin classification systems. J Oral Rehabil. 1992; 19: 569-84. 12. Bayne C. Perspective: Our future in restorative dental materials. J Est Dent. 2000; 12:175-83. 13. Dietschi D, Magne P, Holz J. Recent trends in esthetic restorations for posterior teeth. Quintessence Int. 1994; 10:659-77. 14. Furness A, Tadros M, Looney S, Rueggeberg F. Effect of bulk/incremental fill on internal gap formation of bulk-fill composites. J Dent. 2014; 42:439-49. 15. Polydorou O, Manolakis A, Hellwig E, Hahn P. Evaluation of the curing depth of two translucent composite materials using a halogen and two LED curing units. Clin Oral Invest. 2008;12:45-51. 16. Burtscher P, Rheinberger V. Germanium based photoinitiator as an alternative to camphorquinone/amine. IADR Abstract 2008; 1611. 17. Kerr Corporation [Internet]; 2011. [Consultado el 19 de Octubre de 2014]. Disponible en: http://sonicfill.eu/science/sonicfill-difference.aspx 18. Jackson RD. Colocación de composite en posteriores, Una nueva técnica, eficiente y práctica [Internet], Dentistry Today.; 2011. [Consultado el 28 de Octubre de 2014]. Disponible en: http://www.kerrdental.com/kerrdental-composites-sonicfill-getting-to-know-your-handpiece . 19. Pfeifer C, Ferracane J, Sakaguchi, Braga R. Factors affecting photopolymerization stress in dental composites. J Dent Res. 2008;87(11):1043-1047. 20. Muñoz C. Microfiltración en preparaciones de Clase II restauradas con el sistema SonicFill. [Internet] Bio Mater. 2011. [Consultado el 28 de Octubre de 2014]. Disponible en: http://www.kerrdental.de/media/553772/sonicfill_portfolio_investigacion_cientifica.pdf 21. Kerr Corporation – SonicFill. Portafolio de Investigación Científica. [Internet]; 2011. [Consultado el 7 de Noviembre de 2013]. Disponible en: http://www.kerrdental.de/media/553772/sonicfill_portfolio_investigacion_cientifica.pdf 22. Ortiz D, Masafierro M. Adaptación, profundidad de polimerización y sellado marginal de restauraciones realizadas con una resina compuesta microhíbrida fluidificada y con Sonicfill®. Rev. Biomater. 2014; 1(2): 32-53. 23. Carrillo C, Monrroy M. Materiales de resinas compuestas y su polimerización. Rev. ADM. 2009; 65(4): 10-17. 24. Moszner N, Fischer U, Ganster B, Liska R, Rheinberger V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater.2008; 24 (7): 901-7. 25. Lima I et al. Effects of heat treatment on the microhardness of direct composites at different depths of restoration. Rev Odonto Cienc. 2012; 27(1):36-40. 26. Aguiar F et al. Influence of light curing and sample thickness on microhardness of a composite resin. Clin Cosmet InvestigDent. 2009; 1: 21–25. 27. Kim R, Kim Y, Choi N, Lee I. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent. 2015; 43: 430-39. 28. Zorzina J et al. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent Mater. 2015; 31:293-301. 29. Do T et al. Cuspal Flexure, Depth-of-cure, and Bond Integrity of Bulk-fill Composites. Pediatr Dent. 2014;36 (7):468-73. 30. Campos E. Marginal adaptation of class II cavities restored with bulk-fill composites. J Dent. 2014; 42: 575-81. 31. Campos E. Marginal adaptation of class II cavities restored with bulk-fill composites. J Dent.2014; 42(5): 575-81. 32. Wanner M. Scientific documentation Tetric® N-Ceram Bulk Fill[Internet]; 2014. Ivoclar Vivadent. [citado 20 Oct 2014] Disponible en: file:///C:/Users/Donatella/Downloads/Tetric+N-Ceram+Bulk+Fill%20(6).pdf 33. Sonicfill/Sonic-Activated[Internet], Bulk Fill Composite System; 2013.Kerr. [actualizado 14 Feb 2013; citado 4 abr 2013] Disponible en:http://www.sonicfill.kerrdental.com/product-info.php 34. Alshali R, Silikas N, Satterthwaite J. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013; 29: 213–17. 35. Flury S, Peutzfeldt A, Lussi A. Influence of increment thickness on microhardness and dentin bond strength of bulkfill resin composites. Dent Mater. 2014; 30: 1104–12. 36. Machado C. Efecto de la unidad de luz y de la profundidad de polimerización sobre la microdureza de un composite. Rev Odontol Vital. 2010; 2(13)47-55. 37. Beun,S, Glorieux T, Devaux J, Vreven J, Leloup G. Characterization of nanofilled compared to universal and microfilled composites. Dent Mater. 2006; 23(1): 51-59. 38. Webber M et al. Bulk-Fill resin- based composites: Microleakage of class II restorations. J Surg Clin Dent.2014; 2(1):15-19. 39. Gómez S. Evaluación in vitro de la microdureza superficial de diferentes resinas comerciales, frente a la acción de una bebida gaseosa. Rev Odontol Mex. 2010: 8-14. 40. Poggio C, Lombardini M, Gaviati S, Chiesa M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J Conserv Dent. 2012; 15(3): 237-41. 41. Webb L, Reynoso G, Delgado L. Evaluación de la microdureza superficial de una resina compuesta según fuente de luz, su opacidad y tiempo de exposición. Rev Estomatol Herediana. 2009; 19(2):96-102. 42. Swift E et al. Visible Light-Curing. J. of Esthetic and Restorative Dentistry.2011; 23(3):191–96. 43. Rouhollahi1 M, Mohammadibasir1 M, Talim S. Comparative Depth of Cure Among Two Light-Cured Core Build-Up Composites By Surface Vickers Hardness. J Dent. 2012; 9(3):255-61. 44. Ernst C. et al. Depth of cure of Led vs QTH light-curing devices at a distance of 7mm. J Adhes Dent. 2004; 6:141-50. 45. Price R, Fahey J, Felix C. Knoop Microhardness Mapping Used to Compare the Efficacy of LED, QTH, and PAC Curing Lights. Oper Dent. 2010; 35:58–68. 46. Rueggeberg F, Cole M, Looney S, Vickers A, Swift E. Comparison of Manufacturer-Recommended Exposure Durations with Those Determined Using Biaxial Flexure Strength and Scraped Composite Thickness Among a Variety of Light-Curing Units. J Esthet Restor Dent. 2009; 21:43-61. 47. Riberiro B, Boaventura J, Gaiao U, Saad J, Candido M. Efeito de fontes de luz na microdureza de resinas compostas. Rev Gaúcha Odontol. 2011; 59(2): 229-36. 48. Garoushi S y cols. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater. 2013; 29:835-41. 49. Delgado C. Avaliação da microdureza superficial de resinas compostas extraclaras fotopolimerizadas por luz halógena e LEDs. Descrição das características dos aparelhos fotopolimerizadores. [Tesis de maestría].Brazil: Universidade Estadual de Ponta Grossa; 2004. 50. Nagas I, Egilmez f, Ergun G. The Effect of Irradiation Distance on Microhardness of Resin Composites Cured with Different Light Curing Units. Eur J Dent. 2010; 4:440-46. 51. Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristic M. Degree of onversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil. 2001; 28(6):586-91. 52. Ruan J. Efecto del tiempo de exposición sobre la eficacia de la polimerización con unidades equipoadas con luz emitida por Diodos- Led’s. Rev Colomb Investig Odontol. 2009; 1(1):29-37. 53. Pereira S. Resina composta fotopolimerizável. Avaliação da dureza superficial em função de: cor, tempo de exposição, intensidade de luz e profundidade do material. [Tesis de Doctorado]. Araraquara: Universidad Estadual Paulista Araraquara; 1999. 54. Ruyter IE, Oysaed H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand.1982; 40:179-92. 55. Finana L, Palin W, Moskwa N, McGinleya E, Fleminga G. The influence of irradiation potential on the degree of conversion and mechanical properties of two Bulk-fill flowable RBC base materials. Dent Mater. 2013; 29: 906-12. 56. Beuna S, Glorieuxa T, Devauxb J, Vrevena J, Leloupa G. Characterization of nanofilled compared to universal and microfilled composites. Dent Mater. 2006:1-9. 57. Yaman B, Efes B, Dörter C, Gömeç Y, Erdilek D, Büyükgökçesu S. The effects of halogen and light-emitting diode light curing on the depth of cure and surface microhardness of composite resins. J Conserv Dent. 2011; 14(2): 136-39. 58. Price R, Core F, Pantelis A. Effects of resin composite composition and irradiation distance on the performance of curing lights. Biomaterials. 2004; 25: 4465–77. 59. Machado C. Efecto de la unidad de luz y de la profundidad de polimerización sobre la microdureza de un composite. Rev Odontol Vital. 2010; 2(13)47-55. 60. Mandikos M. A comparison of the wear resistance and hardness of indirect composite Resins. J Prosthet Dent. 2001; 85(4): 386-95. 61. Sufyan G, Eija S, Pekka K, Lippo L. Physical properties and depth of cure of a new short fiber reinforced composite. J Dent Mater.2013; 29:835‐41. 62. Mandikos M et al. A comparison of the wear resistance and hardness of indirect composite resins. J Prosthet Dent. 2001; 85(4): 386-95. 63. Rouhollahi M, Mohammadibasir M, Talim S. Comparative Depth of Cure Among Two Light-Cured Core Build-Up Composites By Surface Vickers Hardness. J Dent. 2012; 9(3):255-61. 64. Yoshida K, Meng X. Influence of light-exposure methods and depths of cavity on the microhardness of dual-cured core build-up resin composites. J Appl Oral Sci. 2014; 22(1):44-51. 65. Ortiz D, Masafierro M. Adaptación, profundidad de polimerización y sellado marginal de restauraciones realizadas con una resina compuesta microhíbrida fluidificada y con Sonicfill®. Rev. Biomater. 2014; 1(2): 32-53. 66. Botto I, Aizencop D, Bader M. Resistencia compresiva y dureza superficial de un sistema de resina compuesta monoincremental v/s uno convencional. Rev. Biomater. 22014; 1(2):13-31. 67. Par M et al. Effect of temperature on post-cure polymerization of bulk-fill composites. J Dent. 2014; 42: 255-60. 68. Alshali R ,Salim N, Satterthwaite J, Silikas N. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites. J Dent. 2015; 43: 209-18.
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.sourceUniversidad Peruana de Ciencias Aplicadas (UPC)
dc.sourceRepositorio Académico UPC
dc.subjectResinas compuestas
dc.subjectPruebas de dureza
dc.subjectOdontología
dc.subjectTesis
dc.titleComparación in vitro de la microdureza superficial de la resina compuesta Tetric® N-Ceram Bulk Fill y Sonicfill™ según profundidad de fotocurado
dc.typeinfo:eu-repo/semantics/bachelorThesis


Este ítem pertenece a la siguiente institución