dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorPereira, Luís Augusto Martins
dc.creatorRodrigues, Douglas
dc.creatorRibeiro, Patricia Bellin
dc.creatorPapa, João Paulo
dc.creatorWeber, Silke Anna Theresa
dc.creatorIEEE
dc.date2015-03-18T15:55:03Z
dc.date2016-10-25T20:32:43Z
dc.date2015-03-18T15:55:03Z
dc.date2016-10-25T20:32:43Z
dc.date2014-01-01
dc.date.accessioned2017-04-06T07:12:51Z
dc.date.available2017-04-06T07:12:51Z
dc.identifier2014 Ieee 27th International Symposium On Computer-based Medical Systems (cbms). New York: Ieee, p. 14-17, 2014.
dc.identifier1063-7125
dc.identifierhttp://hdl.handle.net/11449/117069
dc.identifierhttp://acervodigital.unesp.br/handle/11449/117069
dc.identifier10.1109/CBMS.2014.25
dc.identifierWOS:000345222200003
dc.identifierhttp://dx.doi.org/10.1109/CBMS.2014.25
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/927716
dc.descriptionEvolutionary algorithms have been widely used for Artificial Neural Networks (ANN) training, being the idea to update the neurons' weights using social dynamics of living organisms in order to decrease the classification error. In this paper, we have introduced Social-Spider Optimization to improve the training phase of ANN with Multilayer perceptrons, and we validated the proposed approach in the context of Parkinson's Disease recognition. The experimental section has been carried out against with five other well-known meta-heuristics techniques, and it has shown SSO can be a suitable approach for ANN-MLP training step.
dc.languageeng
dc.publisherIeee
dc.relation2014 Ieee 27th International Symposium On Computer-based Medical Systems (cbms)
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArtificial Neural Networks
dc.subjectParkinsons' Disease
dc.subjectSocial-Spider Optimization
dc.titleSocial-spider optimization-based artificial neural networks training and its applications for Parkinson's disease identification
dc.typeOtro


Este ítem pertenece a la siguiente institución