dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLeao, Fabio Bertequini
dc.creatorPereira, Rodrigo A. F.
dc.creatorMantovani, Jose R. S.
dc.date2015-03-18T15:53:31Z
dc.date2016-10-25T20:25:06Z
dc.date2015-03-18T15:53:31Z
dc.date2016-10-25T20:25:06Z
dc.date2014-12-01
dc.date.accessioned2017-04-06T07:04:01Z
dc.date.available2017-04-06T07:04:01Z
dc.identifierInternational Journal Of Electrical Power & Energy Systems. Oxford: Elsevier Sci Ltd, v. 63, p. 787-805, 2014.
dc.identifier0142-0615
dc.identifierhttp://hdl.handle.net/11449/116571
dc.identifierhttp://acervodigital.unesp.br/handle/11449/116571
dc.identifier10.1016/j.ijepes.2014.06.052
dc.identifierWOS:000341336700085
dc.identifierhttp://dx.doi.org/10.1016/j.ijepes.2014.06.052
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/927218
dc.descriptionThis paper presents a novel mathematical model for fast fault section estimation in a Distribution Control Center (DCC). The mathematical model is divided into two parts, namely: (1) a protection system operations model based on operator's heuristic knowledge of the protection system performance and (2) an optimization Unconstrained Binary Programming (UBP) model based on parsimonious covering theory. In order to solve the UBP model, an Adaptive Genetic Algorithm (AGA) using crossing over and mutation rates that are automatically tuned in each generation is proposed. An Alarm Probabilistic Generator Algorithm (APGA) is developed and a real four-interconnected distribution substation system is used to test exhaustively the approach. Results show that the proposed methodology is capable of performing fault section estimation in a very fast and reliable manner. Furthermore, the proposed methodology is a powerful real-time fault diagnosis tool for application in future Distribution Control Centers. (C) 2014 Elsevier Ltd. All rights reserved.
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageeng
dc.publisherElsevier B.V.
dc.relationInternational Journal Of Electrical Power & Energy Systems
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDistribution control centers
dc.subjectFault section estimation
dc.subjectFault diagnosis
dc.subjectProtective relaying
dc.subjectDigital protection
dc.subjectGenetic algorithm
dc.titleFast fault section estimation in distribution control centers using adaptive genetic algorithm
dc.typeOtro


Este ítem pertenece a la siguiente institución