dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLlibre, Jaume
dc.creatorLopes, Bruno D.
dc.creatorMoraes, Jaime R. de
dc.date2015-03-18T15:53:16Z
dc.date2016-10-25T20:24:42Z
dc.date2015-03-18T15:53:16Z
dc.date2016-10-25T20:24:42Z
dc.date2015-01-01
dc.date.accessioned2017-04-06T07:02:13Z
dc.date.available2017-04-06T07:02:13Z
dc.identifierApplied Mathematics And Computation. New York: Elsevier Science Inc, v. 250, p. 887-907, 2015.
dc.identifier0096-3003
dc.identifierhttp://hdl.handle.net/11449/116403
dc.identifierhttp://acervodigital.unesp.br/handle/11449/116403
dc.identifier10.1016/j.amc.2014.11.029
dc.identifierWOS:000346241000077
dc.identifierhttp://dx.doi.org/10.1016/j.amc.2014.11.029
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/927050
dc.descriptionThe main goal of this paper is to study the maximum number of limit cycles that bifurcate from the period annulus of the cubic centers that have a rational first integral of degree 2 when they are perturbed inside the class of all cubic polynomial differential systems using the averaging theory. The computations of this work have been made with Mathematica and Maple. (C) 2014 Elsevier Inc. All rights reserved.
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageeng
dc.publisherElsevier B.V.
dc.relationApplied Mathematics And Computation
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPolynomial vector fields
dc.subjectLimit cycles
dc.subjectIsochronous centers
dc.subjectPeriodic orbits
dc.subjectAveraging method
dc.titleLimit cycles of cubic polynomial differential systems with rational first integrals of degree 2
dc.typeOtro


Este ítem pertenece a la siguiente institución