dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Figueiredo, Giovany M. | |
dc.creator | Pimenta, Marcos T. O. | |
dc.date | 2014-12-03T13:11:41Z | |
dc.date | 2016-10-25T20:14:49Z | |
dc.date | 2014-12-03T13:11:41Z | |
dc.date | 2016-10-25T20:14:49Z | |
dc.date | 2013-07-01 | |
dc.date.accessioned | 2017-04-06T06:33:13Z | |
dc.date.available | 2017-04-06T06:33:13Z | |
dc.identifier | Bulletin of the Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 20, n. 3, p. 519-534, 2013. | |
dc.identifier | 1370-1444 | |
dc.identifier | http://hdl.handle.net/11449/113412 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/113412 | |
dc.identifier | WOS:000325667500010 | |
dc.identifier | http://projecteuclid.org/euclid.bbms/1378314513 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/924154 | |
dc.description | We consider the fourth-order problem{epsilon(4)Delta(2)u + V(x)u = f(u) + gamma vertical bar u vertical bar(2)**-(2)u in R-N u is an element of H-2(R-N),where epsilon > 0, N >= 5, V is a positive continuous potential, f is a function with subcritical growth and gamma is an element of {0,1}. We relate the number of solutions with the topology of the set where V attain its minimum values. We consider the subcritical case gamma = 0 and the critical case gamma = 1. In the proofs we apply Ljusternik-Schnirelmann theory. | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | eng | |
dc.publisher | Belgian Mathematical Soc Triomphe | |
dc.relation | Bulletin of the Belgian Mathematical Society - Simon Stevin | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | variational methods | |
dc.subject | biharmonic equations | |
dc.subject | nontrivial solutions | |
dc.title | Multiplicity of solutions for a biharmonic equation with subcritical or critical growth | |
dc.type | Otro | |