dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorFigueiredo, Giovany M.
dc.creatorPimenta, Marcos T. O.
dc.date2014-12-03T13:11:41Z
dc.date2016-10-25T20:14:49Z
dc.date2014-12-03T13:11:41Z
dc.date2016-10-25T20:14:49Z
dc.date2013-07-01
dc.date.accessioned2017-04-06T06:33:13Z
dc.date.available2017-04-06T06:33:13Z
dc.identifierBulletin of the Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 20, n. 3, p. 519-534, 2013.
dc.identifier1370-1444
dc.identifierhttp://hdl.handle.net/11449/113412
dc.identifierhttp://acervodigital.unesp.br/handle/11449/113412
dc.identifierWOS:000325667500010
dc.identifierhttp://projecteuclid.org/euclid.bbms/1378314513
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/924154
dc.descriptionWe consider the fourth-order problem{epsilon(4)Delta(2)u + V(x)u = f(u) + gamma vertical bar u vertical bar(2)**-(2)u in R-N u is an element of H-2(R-N),where epsilon > 0, N >= 5, V is a positive continuous potential, f is a function with subcritical growth and gamma is an element of {0,1}. We relate the number of solutions with the topology of the set where V attain its minimum values. We consider the subcritical case gamma = 0 and the critical case gamma = 1. In the proofs we apply Ljusternik-Schnirelmann theory.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageeng
dc.publisherBelgian Mathematical Soc Triomphe
dc.relationBulletin of the Belgian Mathematical Society - Simon Stevin
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectvariational methods
dc.subjectbiharmonic equations
dc.subjectnontrivial solutions
dc.titleMultiplicity of solutions for a biharmonic equation with subcritical or critical growth
dc.typeOtro


Este ítem pertenece a la siguiente institución