dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorKalousios, Chrysostomos
dc.date2014-12-03T13:11:22Z
dc.date2016-10-25T20:13:59Z
dc.date2014-12-03T13:11:22Z
dc.date2016-10-25T20:13:59Z
dc.date2014-05-30
dc.date.accessioned2017-04-06T06:29:25Z
dc.date.available2017-04-06T06:29:25Z
dc.identifierJournal Of Physics A-mathematical And Theoretical. Bristol: Iop Publishing Ltd, v. 47, n. 21, 8 p., 2014.
dc.identifier1751-8113
dc.identifierhttp://hdl.handle.net/11449/113056
dc.identifierhttp://acervodigital.unesp.br/handle/11449/113056
dc.identifier10.1088/1751-8113/47/21/215402
dc.identifierWOS:000336718700014
dc.identifierhttp://dx.doi.org/10.1088/1751-8113/47/21/215402
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/923809
dc.descriptionWe study the scattering equations recently proposed by Cachazo, He and Yuan in the special kinematics where their solutions can be identified with the zeros of the Jacobi polynomials. This allows for a non-trivial two-parameter family of kinematics. We present explicit and compact formulas for the n-gluon and n-graviton partial scattering amplitudes for our special kinematics in terms of Jacobi polynomials. We also provide alternative expressions in terms of gamma functions. We give an interpretation of the common reduced determinant appearing in the amplitudes as the product of the squares of the eigenfrequencies of small oscillations of a system whose equilibrium is the solutions of the scattering equations.
dc.languageeng
dc.publisherIop Publishing Ltd
dc.relationJournal of Physics A: Mathematical and Theoretical
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectscattering amplitudes
dc.subjectJacobi polynomials
dc.subjectgluons
dc.subjectgravitons
dc.titleMassless scattering at special kinematics as Jacobi polynomials
dc.typeOtro


Este ítem pertenece a la siguiente institución