dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorDimitrov, Dimitar K.
dc.creatorLun, Yen Chi
dc.date2014-12-03T13:11:09Z
dc.date2016-10-25T20:12:18Z
dc.date2014-12-03T13:11:09Z
dc.date2016-10-25T20:12:18Z
dc.date2014-05-01
dc.date.accessioned2017-04-06T06:27:10Z
dc.date.available2017-04-06T06:27:10Z
dc.identifierJournal Of Approximation Theory. San Diego: Academic Press Inc Elsevier Science, v. 181, p. 18-29, 2014.
dc.identifier0021-9045
dc.identifierhttp://hdl.handle.net/11449/112917
dc.identifierhttp://acervodigital.unesp.br/handle/11449/112917
dc.identifier10.1016/j.jat.2014.01.007
dc.identifierWOS:000335277200004
dc.identifierhttp://dx.doi.org/10.1016/j.jat.2014.01.007
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/923671
dc.descriptionDenote by (P) over cap ((alpha,beta))(n) (x) the X-1-Jacobi polynomial of degree n. These polynomials were introduced and studied recently by Gomez-Ullate, Kamran and Milson in a series of papers. In this note we establish some properties of the zeros of (P) over cap ((alpha,beta))(n) (x), such as interlacing and monotonicity with respect to the parameters a and beta. They turn out to possess an electrostatic interpretation. The vector, whose components are the zeros, is a saddle point of the energy of the corresponding logarithmic field. (c) 2014 Elsevier Inc. All rights reserved.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal of Approximation Theory
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectX-1 Jacobi polynomials
dc.subjectOrthogonal polynomials
dc.subjectZeros
dc.subjectElectrostatic interpretation
dc.titleMonotonicity, interlacing and electrostatic interpretation of zeros of exceptional Jacobi polynomials
dc.typeOtro


Este ítem pertenece a la siguiente institución