dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLlibre, Jaume
dc.creatorLopes, Bruno D.
dc.creatorDe Moraes, Jaime R.
dc.date2014-12-03T13:11:09Z
dc.date2016-10-25T20:12:17Z
dc.date2014-12-03T13:11:09Z
dc.date2016-10-25T20:12:17Z
dc.date2014-04-01
dc.date.accessioned2017-04-06T06:27:07Z
dc.date.available2017-04-06T06:27:07Z
dc.identifierQualitative Theory Of Dynamical Systems. Basel: Springer Basel Ag, v. 13, n. 1, p. 129-148, 2014.
dc.identifier1575-5460
dc.identifierhttp://hdl.handle.net/11449/112912
dc.identifierhttp://acervodigital.unesp.br/handle/11449/112912
dc.identifier10.1007/s12346-014-0109-9
dc.identifierWOS:000334414100007
dc.identifierhttp://dx.doi.org/10.1007/s12346-014-0109-9
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/923666
dc.descriptionWe study the maximum number of limit cycles that bifurcate from the periodic solutions of the family of isochronous cubic polynomial centers(x) over dot = y(-1 + 2 alpha x + 2 beta x(2)), (y) over dot = x + alpha(y(2) - x(2)) + 2 beta xy(2), alpha is an element of R, beta < 0,when it is perturbed inside the classes of all continuous and discontinuous cubic polynomial differential systems with two zones of discontinuity separated by a straight line. We obtain that this number is 3 for the perturbed continuous systems and at least 12 for the discontinuous ones using the averaging method of first order.
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageeng
dc.publisherSpringer
dc.relationQualitative Theory of Dynamical Systems
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPolynomial vector field
dc.subjectLimit cycle
dc.subjectAveraging method
dc.subjectPeriodic orbit
dc.subjectIsochronous center
dc.titleLimit Cycles for a Class of Continuous and Discontinuous Cubic Polynomial Differential Systems
dc.typeOtro


Este ítem pertenece a la siguiente institución