dc.creatorMosquera Mosquera, Nerly Liliana
dc.creatorCalderón Gutiérrez, Jorge Andrés
dc.creatorChauque, Susana
dc.creatorTorresi, Roberto M.
dc.date2023-03-25T15:07:36Z
dc.date2023-03-25T15:07:36Z
dc.date2023
dc.date.accessioned2024-04-23T17:59:06Z
dc.date.available2024-04-23T17:59:06Z
dc.identifierN. Mosquera, S. Chauque, R. M. Torresi, and J. A. Calderón, “Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes,” Electrochim. Acta, vol. 449, p. 142210, 2023, doi: https://doi.org/10.1016/j.electacta.2023.142210.
dc.identifier0013-4686
dc.identifierhttps://hdl.handle.net/10495/34238
dc.identifier10.1016/j.electacta.2023.142210
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9230195
dc.descriptionABSTRACT: Spinel-type Li1-xMn2O4 material is a promising positive electrode material for lithium-ion batteries. This material presents 3D diffusion channels through the structure, allowing for the rapid diffusion of lithium ions during charge/discharge processes. Given its relevant properties, such as a theoretical specific capacity of 149 mA h g−1 and high working potential, we propose LixMn1.8Ti0.2O4@N-doped graphene oxide (x ≤ 1) as a superior positive electrode material for lithium-ion battery applications. In organic media, the spinel showed excellent Li storage performance due to the incorporation of a conductive carbonaceous matrix (using 1,10 phenanthroline as a graphene precursor). We obtained a specific capacity of 139 mA h g–1, which represented 81% charge retention after 70 cycles. Furthermore, taking advantage of the high working potential of this material, we studied the Li storage capacity using ionic liquids as electrolyte solvents. High rate cycling at high temperatures is essential for their practical applications in extreme environments. In this work, we performed rate capability experiments at different temperatures, obtaining the best response at 40 °C with a specific capacity of 117 mA h g–1 at an applied current density of 1 C.
dc.descriptionCOL0007927
dc.format13
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier
dc.publisherCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)
dc.publisherOxford, Inglaterra
dc.relationElectrochim. Acta.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectLithium ion batteries
dc.subjectBaterías de iones de litio
dc.subjectElectric batteries - Electrodes
dc.subjectBaterías eléctricas - Electrodos
dc.subjectAlmacenamiento de energía
dc.subjectEnergy storage
dc.subjecthttp://id.loc.gov/authorities/subjects/sh2011000687
dc.subjecthttp://id.loc.gov/authorities/subjects/sh85041589
dc.titleEnergy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typehttps://purl.org/redcol/resource_type/ART
dc.typeArtículo de investigación


Este ítem pertenece a la siguiente institución