dc.creatorMuñetón Santa, Guberney
dc.creatorManrique Ruiz, Luis Carlos
dc.date2023-05-10T18:34:59Z
dc.date2023-05-10T18:34:59Z
dc.date2023
dc.date.accessioned2024-04-23T17:52:44Z
dc.date.available2024-04-23T17:52:44Z
dc.identifierhttps://hdl.handle.net/10495/34949
dc.identifier2076-0760
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9230014
dc.descriptionABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging.
dc.format21
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMDPI
dc.publisherRecursos Estratégicos Región y Dinámicas Socioambientales
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by/2.5/co/
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.subjectMultidimensional poverty index
dc.subjectSpatial analysis
dc.subjectPoverty
dc.subjectMachine learning
dc.subjectIndice de pobreza multidimensional
dc.subjectPobreza
dc.subjectAnálisis espacial
dc.subjectMedellín, Colombia
dc.titlePredicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typehttp://purl.org/redcol/resource_type/CJournalArticle
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución