dc.contributorDoronin, Gleb Germanovitch
dc.contributorNatali, Fábio Matheus Amorin
dc.contributorPadilha, Marcos Vinicius Fagundes
dc.contributorGonzalez, Rafael Borro
dc.contributorUniversidade Estadual de Maringá. Departamento de Matemática. Programa de Pós-Graduação em Matemática
dc.creatorBartmeyer, Maria Verônica
dc.date2023-07-11T19:13:06Z
dc.date2023-07-11T19:13:06Z
dc.date2023
dc.date.accessioned2023-10-16T12:33:05Z
dc.date.available2023-10-16T12:33:05Z
dc.identifierhttp://repositorio.uem.br:8080/jspui/handle/1/7214
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9212926
dc.descriptionOrientador: Prof. Dr. Gleb Germanovitch Doronin
dc.descriptionDissertação (mestrado em Matemática)--Universidade Estadual de Maringá, Dep. de Matemática, Programa de Pós-Graduação em Matemática, Área de Concentração: Análise, 2023
dc.descriptionEste trabalho trata do princípio de Ponto Fixo nos espaços de Banach. Estudamos o Teorema do Ponto Fixo de Banach, com aplicações para existência e unicidade de solução para sistemas de equações diferenciais ordinárias, assim como de equações integrais. Demonstramos o teorema de existência e unicidade de solução (fraca) do problema de valor inicial e de contorno para uma equação parabólica não-linear. Em seguida, discutimos um problema de valor inicial em uma forma abstrata. Então, para o caso de um operador diferencial clássico, o Teorema de Kovalevskaya é demonstrado pelo método das majorantes. O capítulo seguinte é dedicado às chamadas Escalas de Espaços de Banach (EEB) e, em particular, a uma EEB de funções Analíticas reais. Formulamos o conceito de operador quasidiferencial em uma escala de espaços de Banach, o qual é utilizado para provar um teorema de existência e unicidade para o seguinte problema de Cauchy $$\frac{d u}{d t}=f(u, t), \quad u(0)=\theta,$$ onde $S\subset F({\R}^m, {\R}^n)$ é uma EEB e $\theta$ é o elemento nulo em $S$. Assumindo que $f: S \times \mathbb{R} \rightarrow S$ é um operador diferencial não-linear dado, um resultado de existência e unicidade é provado, pelo Teorema do Ponto Fixo de Banach. Como aplicação, segue de maneira imediata o teorema de Kovalevskaya, assim como a existência e unicidade de soluções do problema acima em classes de Gevrey.
dc.descriptionThis work is concerned with the Fixed Point principle in Banach spaces. We study the Banach Fixed Point Theorem with applications to the existence and uniqueness of solution for systems of ordinary differential equations, and for integral equations as well. We prove the theorem of existence and uniqueness of (weak) solution to the initial boundary-value problem for a non-linear parabolic equation. Next, we discuss an initial-value problem in an abstract form. Then, for the case of classical differential operator, Kovalevskaya's Theorem has been proved by the classical majorants method. The next chapter is devoted to the so-called Scales of Banach Spaces (SBS) and, in particular, a SBS of Real Analytic Functions. This is a central point of our work. We formulate the concept of a quasidifferential operator in a scale of Banach spaces which is used to prove an existence and uniqueness theorem for the following Cauchy problem: $$ \frac{d u}{d t}=f(u, t), \quad u(0)=\theta,$$ where $S\subset F({ \R}^m, {\R}^n)$ is a SBS and $\theta$ is the zero element in $S$. Assuming that $f: S \times \mathbb{R} \rightarrow S$ is a given nonlinear differential operator, the existence-uniqueness result is proven by the Banach fixed point theorem. As an application, the Kovalevskaya theorem follows immediately, as well as the existence and uniqueness of solutions to the above problem in Gevrey's classes.
dc.format83 f. : il.
dc.formatapplication/pdf
dc.languagePortuguês
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherCentro de Ciências Exatas
dc.subjectPrincípio de ponto fixo
dc.subjectEspaços de Banach
dc.subjectProblema abstrato de Cauchy
dc.subjectSoluções analíticas
dc.subjectScale of Banach spaces
dc.subjectAbstract Cauchy problem
dc.subject515.732
dc.titlePrincípio de ponto fixo em espaços de Banach
dc.typeDissertação


Este ítem pertenece a la siguiente institución