dc.contributorFukuoka, Ryuichi
dc.contributorUniversidade Estadual de Maringá. Departamento de Matemática. Programa de Pós-Graduação em Matemática
dc.creatorRodrigues, Hugo Murilo
dc.date2021-11-18T20:06:51Z
dc.date2021-11-18T20:06:51Z
dc.date2020
dc.date.accessioned2023-10-16T12:30:18Z
dc.date.available2023-10-16T12:30:18Z
dc.identifierhttp://repositorio.uem.br:8080/jspui/handle/1/6235
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9211908
dc.descriptionOrientador: Prof. Dr. Ryuichi Fukuoka
dc.descriptionTese (doutorado)--Universidade Estadual de Maringá, Dep. de Matemática, Programa de Pós-Graduação em Matemática, Área de Concentração: Geometria e Topologia, 2020
dc.descriptionIn this work we define a class of C0-Finsler structures F on a differentiable manifold M which we call of Pontryagin type. In this type of structure it is possible to define a control system for the problem of minimizingthearclengthofacurveconnecting twopointsof (M;F) under the conditions of Pontryagin's maximum principle. It establishes necessary conditions for na admissible control and the respective solution to be optimal. As the Pontryagin's maximum principle is developed through the Hamiltonian formalism, we obtain Hamiltonian Fields from this process on the cotangent bundle of the manifold and When submitting such Fields to thecondition of the maximum principle, we obtain the extended geodesic field.
dc.format93 f. : il.
dc.formatapplication/pdf
dc.languageen
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherCentro de Ciências Exatas
dc.subjectCampo geodésico estendido
dc.subjectFibrados contangente
dc.subjectEstruturas de Finsler de classe C0
dc.subject516.1
dc.titleGeodesic fields for Pontryagin type Co-Finsler manifolds = Campo geodésico para variedades de Finsler de classe Co do tipo Pontryagin
dc.typeTese


Este ítem pertenece a la siguiente institución