dc.contributor | Fukuoka, Ryuichi | |
dc.contributor | Universidade Estadual de Maringá. Departamento de Matemática. Programa de Pós-Graduação em Matemática | |
dc.creator | Rodrigues, Hugo Murilo | |
dc.date | 2021-11-18T20:06:51Z | |
dc.date | 2021-11-18T20:06:51Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-16T12:30:18Z | |
dc.date.available | 2023-10-16T12:30:18Z | |
dc.identifier | http://repositorio.uem.br:8080/jspui/handle/1/6235 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9211908 | |
dc.description | Orientador: Prof. Dr. Ryuichi Fukuoka | |
dc.description | Tese (doutorado)--Universidade Estadual de Maringá, Dep. de Matemática, Programa de Pós-Graduação em Matemática, Área de Concentração: Geometria e Topologia, 2020 | |
dc.description | In this work we define a class of C0-Finsler structures F on a differentiable manifold M which we call of Pontryagin type. In this type of structure it is possible to define a control system for the problem of minimizingthearclengthofacurveconnecting twopointsof (M;F) under the conditions of Pontryagin's maximum principle. It establishes necessary conditions for na admissible control and the respective solution to be optimal. As the Pontryagin's maximum principle is developed through the Hamiltonian formalism, we obtain Hamiltonian Fields from this process on the cotangent bundle of the manifold and When submitting such Fields to thecondition of the maximum principle, we obtain the extended geodesic field. | |
dc.format | 93 f. : il. | |
dc.format | application/pdf | |
dc.language | en | |
dc.publisher | Programa de Pós-Graduação em Matemática | |
dc.publisher | Centro de Ciências Exatas | |
dc.subject | Campo geodésico estendido | |
dc.subject | Fibrados contangente | |
dc.subject | Estruturas de Finsler de classe C0 | |
dc.subject | 516.1 | |
dc.title | Geodesic fields for Pontryagin type Co-Finsler manifolds = Campo geodésico para variedades de Finsler de classe Co do tipo Pontryagin | |
dc.type | Tese | |