dc.creator | Fernández-Lucas, Jesús | |
dc.date | 2021-10-04T19:43:32Z | |
dc.date | 2021-10-04T19:43:32Z | |
dc.date | 2021-08-03 | |
dc.date.accessioned | 2023-10-03T20:12:04Z | |
dc.date.available | 2023-10-03T20:12:04Z | |
dc.identifier | 2218-273X | |
dc.identifier | https://hdl.handle.net/11323/8774 | |
dc.identifier | https://doi.org/10.3390/biom11081147 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174768 | |
dc.description | Nucleic acid derivatives are involved in cell growth and replication, but they are also particularly important as building blocks for RNA and DNA synthesis. In nature, purine and pyrimidine nucleotides are synthesized through two distinct pathways, de novo and salvage pathways, both depending on 5-phospho-α-D-ribose 1-diphosphate (PRPP) as a key element [1,2]. In the de novo pathway, purine and pyrimidine nucleotides are synthesized from simple molecules such as glycine, glutamine, or aspartate. In contrast, the salvage pathway employs scavenged preformed endogenous or exogenous nucleobases to generate the corresponding nucleoside-50 -monophosphates (NMPs) [3]. Both metabolic routes, de novo and salvage pathways, lead to the synthesis of NMPs, which are subsequently phosphorylated to obtain the corresponding nucleoside-50 -di (NDPs) and triphosphates (NTPs). Moreover, all organisms also generate (20 -deoxy)nucleoside-50 -diphosphates (dNDPs) from NDPs [4], which will be converted to 20 -deoxyribonucleotides (dNTPs), as precursors for DNA synthesis. Additionally, nucleotide derivatives are involved in cell signaling (cyclic nucleotides, cNMPs or c-di-NMPs) [5] and a multitude of different biochemical processes, acting as cofactors (NADP+ ) or energy sources (ATP). | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | 1. el Kouni, M.H. Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacol. Ther. 2003, 99, 283–309. [CrossRef] | |
dc.relation | 2. Del Arco, J.; Fernández-Lucas, J. Purine and pyrimidine salvage pathway in thermophiles: A valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl. Microbiol. Biotechnol. 2018, 102, 7805–7820. [CrossRef] [PubMed] | |
dc.relation | 3. Del Arco, J.; Fernandez-Lucas, J. Purine and pyrimidine phosphoribosyltransferases: A versatile tool for enzymatic synthesis of nucleoside-50 -monophosphates. Curr. Pharm. Des. 2017, 23, 6898–6912. [CrossRef] [PubMed] | |
dc.relation | 4. Loderer, C.; Jonna, V.R.; Crona, M.; Grinberg, I.R.; Sahlin, M.; Hofer, A.; Lundin, D.; Sjöberg, B.M. A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover. J. Biol. Chem. 2017, 292, 19044–19054. [CrossRef] [PubMed] | |
dc.relation | 5. Caricati-Neto, A.; García, A.G.; Bergantin, L.B. Pharmacological implications of the Ca2+/cAMP signaling interaction: From risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol. Res. Perspect. 2015, 3, e00181. [CrossRef] | |
dc.relation | 6. Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 2009, 109, 2880–2893. [CrossRef] [PubMed] | |
dc.relation | 7. Fernández-Lucas, J.; Camarasa, M.J. (Eds.) Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives; John Wiley & Sons: Hoboken, NJ, USA, 2019. [CrossRef] | |
dc.relation | 8. Kayushin, A.L.; Tokunova, J.A.; Fateev, I.V.; Arnautova, A.O.; Berzina, M.Y.; Paramonov, A.S.; Lutonina, O.I.; Dorofeeva, E.V.; Antonov, K.V.; Esipov, R.S.; et al. Radical dehalogenation and purine nucleoside phosphorylase E. coli: How does an admixture of 20, 30 -anhydroinosine hinder 2-fluoro-cordycepin synthesis. Biomolecules 2021, 11, 539. [CrossRef] [PubMed] | |
dc.relation | 9. Rivero, C.W.; García, N.S.; Fernández-Lucas, J.; Betancor, L.; Romanelli, G.P.; Trelles, J.A. Green production of cladribine by using immobilized 20 -deoxyribosyltransferase from Lactobacillus delbrueckii stabilized through a double covalent/entrapment technology. Biomolecules 2021, 11, 657. [CrossRef] [PubMed] | |
dc.relation | 10. Sverkeli, L.J.; Hayat, F.; Migaud, M.E.; Ziegler, M. Enzymatic and chemical syntheses of vacor analogs of nicotinamide riboside, NMN and NAD. Biomolecules 2021, 11, 1044. [CrossRef] | |
dc.relation | 11. Fateev, I.V.; Kostromina, M.A.; Abramchik, Y.A.; Eletskaya, B.Z.; Mikheeva, O.O.; Lukoshin, D.D.; Zayats, E.A.; Berzina, M.Y.; Dorofeeva, E.V.; Paramonov, A.S.; et al. Multi-enzymatic cascades in the synthesis of modified nucleosides: Comparison of the thermophilic and mesophilic pathways. Biomolecules 2021, 11, 586. [CrossRef] [PubMed] | |
dc.relation | 12. Frisch, J.; Marši´c, T.; Loderer, C.A. Novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate. Biomolecules 2021, 11, 346. [CrossRef] [PubMed] | |
dc.relation | 13. Becker, M.; Nikel, P.; Andexer, J.N.; Lütz, S.; Rosenthal, K.A. Multi-enzyme cascade reaction for the production of 2’3’-cGAMP. Biomolecules 2021, 11, 590. [CrossRef] [PubMed] | |
dc.relation | 14. Acosta, J.; Pérez, E.; Sánchez-Murcia, P.A.; Fillat, C.; Fernández-Lucas, J. Molecular basis of ndt-mediated activation of nucleosidebased prodrugs and application in suicide gene therapy. Biomolecules 2021, 11, 120. [CrossRef] [PubMed] | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Biomolecules | |
dc.source | https://www.mdpi.com/2218-273X/11/8/1147 | |
dc.subject | Biotechnological applications | |
dc.subject | Biomedical applications | |
dc.subject | Nucleosides | |
dc.subject | Nucleotides | |
dc.title | Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |