dc.creatorNeira Rodado, Dionicio
dc.creatorNugent, Christopher
dc.creatorCleland, Ian
dc.creatorVelasquez, Javier
dc.creatorViloria, Amelec
dc.date2021-01-22T23:41:36Z
dc.date2021-01-22T23:41:36Z
dc.date2020
dc.date.accessioned2023-10-03T20:12:03Z
dc.date.available2023-10-03T20:12:03Z
dc.identifierhttps://hdl.handle.net/11323/7755
dc.identifier10.3390/s20071858
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174766
dc.descriptionHuman activity recognition (HAR) is a popular field of study. The outcomes of the projects in this area have the potential to impact on the quality of life of people with conditions such as dementia. HAR is focused primarily on applying machine learning classifiers on data from low level sensors such as accelerometers. The performance of these classifiers can be improved through an adequate training process. In order to improve the training process, multivariate outlier detection was used in order to improve the quality of data in the training set and, subsequently, performance of the classifier. The impact of the technique was evaluated with KNN and random forest (RF) classifiers. In the case of KNN, the performance of the classifier was improved from 55.9% to 63.59%.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationPrins J., Mader D. Multivariate Control Charts for Grouped and Individual Observations. Manuf. Syst. 2007:37–41. doi: 10.1080/08982119708919108
dc.relationFallon A., Spada C. Detection and accommodation of outliers. Environ. Sampl. Monit. Primer. 1997;6:217–230.
dc.relationMahmoud S., Lotfi A., Langensiepen C. User activities outliers detection; Integration of statistical and computational intelligence techniques. Comput. Intell. 2016;32:49–71. doi: 10.1111/coin.12045.
dc.relationAparisi F., Carlos J., Díaz G. Aumento de la potencia del gráfico de control multivariante T 2 de Hotelling utilizando señales adicionales de falta de control. Estadística Española. 2001;43:171–188.
dc.relationBauder R.A., Khoshgoftaar T.M. Multivariate anomaly detection in medicare using model residuals and probabilistic programming; Proceedings of the FLAIRS 2017—30th International Florida Artificial Intelligence Research Society Conference; Marco Island, FL, USA. 22–24 May 2017; pp. 417–422.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceSensors (Basel)
dc.sourcehttps://pubmed.ncbi.nlm.nih.gov/32230844/
dc.subjectHAR
dc.subjectdataset quality
dc.subjectmachine learning
dc.subjectmultivariate analysis
dc.titleEvaluating the impact of a two-stage multivariate data cleansing approach to improve to the performance of machine learning classifiers: a case study in human activity recognition
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución