dc.creatorRíos-Henao, Cristian
dc.creatorAriza Colpas, Paola Patricia
dc.creatorDe-La-Hoz-Franco, Emiro
dc.creatoraziz, shariq
dc.creatorPiñeres Melo, Marlon Alberto
dc.creatorPerez Coronell, Leidy
dc.date2023-05-19T22:52:02Z
dc.date2024-10-20
dc.date2023-05-19T22:52:02Z
dc.date2022-10-20
dc.date.accessioned2023-10-03T20:12:00Z
dc.date.available2023-10-03T20:12:00Z
dc.identifierC. Rios-Henao, P. P. Ariza-Colpas, E. De-la-Hoz-Franco, S. B. Aziz, M. A. P. Melo and L. Perez-Coronell, "Automatic Learning for Commercial Registration Renewal—The Case of Camara de Comercio of Barranquilla-Colombia," in IEEE Engineering Management Review, vol. 51, no. 1, pp. 26-40, 1 Firstquarter,march 2023, doi: 10.1109/EMR.2022.3216200.
dc.identifier0360-8581
dc.identifierhttps://hdl.handle.net/11323/10154
dc.identifier10.1109/EMR.2022.3216200
dc.identifier1937-4178
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174758
dc.descriptionThis article shows the implementation of a prediction model of the payment behavior of the renewal concept of companies registered in the commercial registry of the Barranquilla Chamber of Commerce using machine learning techniques in a multilevel classification scenario, where it will offer the organization a tool that allows it to know in advance the behavior of the payment of the renewal of a company in such a way that it is able to design strategies to increase the success indicators in terms of the number of registration renewals, mercantile, and of the income collected for this concept.
dc.format1 página
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.publisherUnited States
dc.relationIEEE Engineering Management Review
dc.relation1. "Funciones de las Cámaras de Comercio", Dec. 2021.
dc.relation2. "Ley 28 de 1931".
dc.relation3. "Decreto 410 de1971", 1971.
dc.relation4. "Informe de Gestión 2015", 2015.
dc.relation5. "Informe de Gestión 2016", 2016.
dc.relation6. "Informe de Labores 2017", 2017.
dc.relation7. "Informe de Gestión 2018", 2018.
dc.relation8. M. Jupri and R. Sarno, "Taxpayer compliance classification using C4.5 SVM KNN Naive Bayes and MLP", Proceeding of the International Conference on Information and Communications Technology, pp. 297-303, 2018.
dc.relation9. G. Warner et al., "Modeling tax evasion with genetic algorithms", Economics of Governance, vol. 16, no. 2, pp. 165-178, May 2015.
dc.relation10. E. Rahimikia, S. Mohammadi, T. Rahmani and M. Ghazanfari, "Detecting corporate tax evasion using a hybrid intelligent system: A case study of Iran", International Journal of Accounting Information Systems, vol. 25, pp. 1-17, 2017.
dc.relation11. W. Didimo, L. Giamminonni, G. Liotta, F. Montecchiani and D. Pagliuca, "A visual analytics system to support tax evasion discovery", Decision Support Systems, vol. 110, pp. 71-83, 2018.
dc.relation12. N. D. Goumagias, D. Hristu-Varsakelis and Y. M. Assael, "Using deep Q-learning to understand the tax evasion behavior of risk-averse firms", Expert Systems with Applications, vol. 101, pp. 258-270, 2018.
dc.relation13. M. G. Allingham and A. Sandmo, "Income tax evasion: A theoretical analysis", Journal of Public Economics, vol. 1, no. 3/4, pp. 323-338, 1972.
dc.relation14. D. Micci-Barreca, "A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems", ACM SIGKDD Explorations Newsletter, vol. 3, no. 1, pp. 27-32, 2001.
dc.relation15. P. Velmurugan, A. Kannagi and M. Varsha, "Superior fuzzy enumeration crop prediction algorithm for big data agriculture applications", Materials Today: Proceedings, 2021.
dc.relation16. L. Trujillo, U. Lopez and P. Legrand, "SOAP: Semantic outliers automatic preprocessing", Information Sciences, vol. 526, pp. 86-101, 2020.
dc.relation17. S. G. K. Patro and K. K. Sahu, "Normalization: A preprocessing stage", IARJSET, 2015.
dc.relation18. S. García, J. Luengo and F. Herrera, Data Preprocessing in Data Mining, Cham, Switzerland:Springer, 2014. Show in Context Google Scholar
dc.relation19. R. Vettukattil, "Preprocessing of raw metabonomic data", Methods in Molecular Biology, vol. 1277, pp. 123-136, 2015.
dc.relation20. V. R. Algazi, P. L. Kelly and R. R. Estes, "Compression of binary facsimile images by preprocessing and color shrinking", IEEE Transactions on Communications, vol. 38, no. 9, pp. 1592-1598, Sep. 1990.
dc.relation21. A. Singh, B. S. Prakash and K. Chandrasekaran, "A comparison of linear discriminant analysis and ridge classifier on Twitter data", Proceedings of the International Conference on Computing Communication and Automation, pp. 133-138, Apr. 2016.
dc.relation22. K. Nagashri and J. Sangeetha, "Fake news detection using passive-aggressive classifier and other machine learning algorithms" in Advances in Computing and Network Communications, Singapore:Springer, pp. 221-233, 2021.
dc.relation23. I. Levner, "Feature selection and nearest centroid classification for protein mass spectrometry", BMC Bioinformatics, vol. 6, no. 1, 2005. Show in Context CrossRef Google Scholar
dc.relation24. R. Rosipal, L. J. Trejo and B. Matthews, "Kernel PLS-SVC for linear and nonlinear classification", Proceedings of the 20th International Conference on Machine Learning, pp. 640-647, 2003.
dc.relation25. H. A. A. Alfeilat et al., "Effects of distance measure choice on k-nearest neighbor classifier performance: A review", Big Data, vol. 7, no. 4, pp. 221-248, 2019.
dc.relation26. F. Kabir, S. Siddique, M. R. A. Kotwal and M. N. Huda, "Bangla text document categorization using stochastic gradient descent (SGD) classifier", Proceedings of the International Conference on Cognitive Computing and Information Processing, pp. 1-4, Mar. 2015.
dc.relation27. P. H. Swain and H. Hauska, "The decision tree classifier: Design and potential", IEEE Transactions on Geoscience Electronics, vol. 15, no. 3, pp. 142-147, Jul. 1977.
dc.relation28. J. H. Hong, S. Campbell and P. Yeh, "Optical pattern classifier with perceptron learning" in Landmark Papers on Photorefractive Nonlinear Optics, Singapore:World Scientific, pp. 551-557, 1995. Show in Context CrossRef Google Scholar
dc.relation29. J. A. K. Suykens and J. Vandewalle, "Training multilayer perceptron classifiers based on a modified support vector method", IEEE Transactions on Neural Networks, vol. 10, no. 4, pp. 907-911, Jul. 1999.
dc.relation30. A. M. Kibriya, E. Frank, B. Pfahringer and G. Holmes, "Multinomial naive Bayes for text categorization revisited", Proceedings of the Australasian Joint Conference on Artificial Intelligence, pp. 488-499, Dec. 2004.
dc.relation31. G. Singh, B. Kumar, L. Gaur and A. Tyagi, "Comparison between multinomial and Bernoulli naïve Bayes for text classification", Proceedings of the International Conference on Automation Computational and Technology Management, pp. 593-596, Apr. 2019.
dc.relation32. A. H. Jahromi and M. Taheri, "A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features", Proceedings of the Artificial Intelligence and Signal Processing Conference, pp. 209-212, Oct. 2017.
dc.relation33. B. Seref and E. Bostanci, "Sentiment analysis using naive Bayes and complement naive Bayes classifier algorithms on Hadoop framework", Proceedings of the 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, pp. 1-7, Oct. 2018.
dc.relation34. T.-K. An and M.-H. Kim, "A new diverse AdaBoost classifier", Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence, vol. 1, pp. 359-363, Oct. 2010.
dc.relation35. A. Natekin and A. Knoll, "Gradient boosting machines a tutorial", Frontiers in Neurorobotics, vol. 7, 2013.
dc.relation36. P. Ariza Colpas, E. Vicario, E. De-La-Hoz-Franco, M. Pineres-Melo, A. Oviedo-Carrascal and F. Patara, "Unsupervised human activity recognition using the clustering approach: A review", Sensors, vol. 20, no. 9, 2020.
dc.relation37. M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani and R. Budiarto, "Evaluating trust prediction and confusion matrix measures for web services ranking", IEEE Access, vol. 8, pp. 90847-90861, 2020.
dc.relation38. D. Chicco, N. Tötsch and G. Jurman, "The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy bookmaker informedness and markedness in two-class confusion matrix evaluation", BioData Mining, vol. 14, no. 1, 2021.
dc.relation39. E. Milanov, "An alternative confusion matrix implementation for PreCall", 2020.
dc.relation40. T.-S. Lim, W.-Y. Loh and Y.-S. Shih, "A comparison of prediction accuracy complexity and training time of thirty-three old and new classification algorithms", Machine Learning, vol. 40, no. 3, pp. 203-228, 2000.
dc.relation41. B. Biggio et al., "Evasion attacks against machine learning at test time", Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 387-402, Sep. 2013.
dc.relation42. A. Omar, T. M. Mahmoud and T. Abd-El-Hafeez, "Comparative performance of machine learning and deep learning algorithms for Arabic hate speech detection in OSNs", Proceedings of the International Conference on Artificial Intelligence and Computer Vision, pp. 247-257, Apr. 2020.
dc.relation43. S. Xu, Y. Li and Z. Wang, "Bayesian multinomial Naïve Bayes classifier to text classification", Proceedings of the International Conference on Advanced Multimedia and Ubiquitous Engineering, pp. 347-352, 2017.
dc.relation1
dc.relation51
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://ieeexplore.ieee.org/abstract/document/9925575/keywords#keywords
dc.subjectBehavioral sciences
dc.subjectFinance
dc.subjectCompanies
dc.subjectRegisters
dc.subjectLaw
dc.subjectClassification algorithms
dc.subjectOptimization
dc.titleAutomatic Learning for Commercial Registration Renewal—The Case of Cámara de Comercio of Barranquilla-Colombia
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.coverageCámara de Comercio
dc.coverageBarranquilla
dc.coverageColombia


Este ítem pertenece a la siguiente institución