dc.creatorSilva, Jesús
dc.creatorRondon, Carlos
dc.creatorCabrera, Danelys
dc.creatorPineda, Omar
dc.date2021-02-04T23:28:57Z
dc.date2021-02-04T23:28:57Z
dc.date2020
dc.date.accessioned2023-10-03T20:11:57Z
dc.date.available2023-10-03T20:11:57Z
dc.identifierhttps://hdl.handle.net/11323/7830
dc.identifier10.1088/1757-899X/872/1/012033
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174749
dc.descriptionColor is a human perception of the light reflected by an object. It is an appreciation that depends on the way the human´s eyes detect the reflected light and the way the brain processes it. However, for industry, it is an attribute of product appearance and its observation allows the detection of certain anomalies and defects [1]. Therefore, color is a characteristic that allows to judge an object by creating conditions for its acceptance or rejection [2]. In this research, a laboratory experiment was carried out to analyze different factors involved in visual color evaluations in textiles. A complete factorial experiment design was carried out in which the analyzed factors were lighting, noise, color and participants.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] David, A., Esposito, T., Houser, K., Royer, M., Smet, K. A., & Whitehead, L. (2020). A vector field color rendition model for characterizing color shifts and metameric mismatch. Leukos, 16(2), 99-114.
dc.relation[2] Henao-Rodríguez, C., Lis-Gutiérrez, J. P., Gaitán-Angulo, M., Malagón, L. E., & Viloria, A. (2018, May). Econometric analysis of the industrial growth determinants in Colombia. In Australasian Database Conference (pp. 316-321). Springer, Cham.
dc.relation[3] Dentoni, V., Grosso, B., Massacci, G., & Soddu, G. P. (2020). Visual impact evaluation of mines and quarries: the updated Lvi method. Environmental Earth Sciences, 79(5), 1-11.
dc.relation[4] Li, X., Powell, N. B., & Michielsen, S. (2020). Print clarity on digitally printed textiles–a quantitative evaluation. The Journal of The Textile Institute, 111(1), 108-121.
dc.relation[5] Khanh, T. Q., Bodrogi, P., Guo, X., & Anh, P. Q. (2019). Towards a user preference model for interior lighting Part 1: Concept of the user preference model and experimental method. Lighting Research & Technology, 51(7), 1014-1029.
dc.relation[6] Li, X., Powell, N. B., & Michielsen, S. (2020). Print clarity on digitally printed textiles–a quantitative evaluation. The Journal of The Textile Institute, 111(1), 108-121.
dc.relation[7] Gerken, M., Schlemmer, H., & Becker, T. (2019, May). Color discrimination of a short wave colorimeter. In Infrared Technology and Applications XLV (Vol. 11002, p. 1100210). International Society for Optics and Photonics.
dc.relation[8] Hagtvedt, H. (2019). Dark is durable, light is user‐friendly: The impact of color lightness on two product attribute judgments. Psychology & Marketing.
dc.relation[9] Zhou, Z., Wang, C., Zhang, J., & Zhu, Z. (2020). Color difference classification of solid color printing and dyeing products based on optimization of the extreme learning machine of the improved whale optimization algorithm. Textile Research Journal, 90(2), 135-155.
dc.relation[10] Zhang, J., Wen, X., & Whang, M. (2020). Recognition of Emotion According to the Physical Elements of the Video. Sensors, 20(3), 649.
dc.relation[11] Catalina, T., Ene, A., & Biro, A. (2019). Visual and acoustic performance of shading devices–real scale laboratory measurements. In E3S Web of Conferences (Vol. 111). EDP Sciences.
dc.relation[12] Barati, B., Karana, E., Sekulovski, D., & Pont, S. C. (2017). Retail lighting and textiles: Designing a lighting probe set. Lighting Research & Technology, 49(2), 173-194.
dc.relation[13] Lavoué, G., Langer, M., Peytavie, A., & Poulin, P. (2018). A Psychophysical Evaluation of Texture Compression Masking Effects. IEEE transactions on visualization and computer graphics, 25(2), 1336-1346.
dc.relation[14] Ying, G., Xinyan, Z., Xiang, L., & Ye, Z. (2018). Quantitative characterization appreciation of golden citrine golden by the irradiation of [FeO4] 4−. Arabian journal of chemistry, 11(6), 918-923.
dc.relation[15] Zhou, Y., & Tang, R. C. (2017). Influence of fixing treatment on the color fastness and bioactivities of silk fabric dyed with curcumin. The Journal of the Textile Institute, 108(6), 1050-1056.
dc.relation[16] Parody, A., Viloria, A., Lis, J. P., Malagón, L. E., Calí, E. G., & Palma, H. H. (2018, June). Application of an experimental design of D-optimum mixing based on restrictions for the optimization of the pre-painted steel line of a steel producer and marketing company. In International Conference on Data Mining and Big Data (pp. 729-738). Springer, Cham
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceIOP Conference Series: Materials Science and Engineering
dc.sourcehttps://www.researchgate.net/publication/342502262_Influence_of_lighting_and_noise_on_visual_color_assessment_in_textiles
dc.subjectVisual assessment
dc.subjectColor discrimination
dc.subjectTextile color
dc.subjectVisual ergonomics
dc.titleInfluence of lighting and noise on visual color assessment in textiles
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución