Determinación de las interacciones de los estudiantes en un entorno de aprendizaje virtual mediante minería de datos

dc.creatorAmelec, Viloria
dc.creatorRodríguez López, Jorge
dc.creatorPayares, Karen
dc.creatorVargas Mercado, Carlos
dc.creatorEthel Duran, Sonia
dc.creatorHernández-Palma, Hugo
dc.creatorArrozola David, Mónica
dc.date2020-01-16T14:14:16Z
dc.date2020-01-16T14:14:16Z
dc.date2019
dc.date.accessioned2023-10-03T20:11:57Z
dc.date.available2023-10-03T20:11:57Z
dc.identifier1877-0509
dc.identifierhttp://hdl.handle.net/11323/5838
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174748
dc.descriptionThis article focuses on determining the students´ interactions in the Virtual English Course with Distance Education Model (DEM) at Mumbai University, in India. For this purpose, an analysis was carried out on the database of the students during the academic period 2015 - 2018 to select the necessary attributes that allowed to generate a data mining model. An analysis of the mining methods was subsequently carried out comparing each of them in order to select the one that helps the development of the project, choosing the Crisp-dm method since it contains multiple phases indicating each activity to be completed, thus becoming a practical guide. In addition, a comparative analysis was developed taking into account features of the data mining tools where RapidMiner was selected to perform the processes using some algorithms along with the student data which were divided into two sets for training and validation, resulting the decision tree as the best algorithm for the purpose as it correctly classified the instances with a minimum margin of error.
dc.descriptionEste artículo se centra en determinar las interacciones de los estudiantes en el Curso de inglés virtual con el Modelo de educación a distancia (DEM) en la Universidad de Mumbai, en India. Para este propósito, se realizó un análisis en la base de datos de los estudiantes durante el período académico 2015-2018 para seleccionar los atributos necesarios que permitieron generar un modelo de minería de datos. Posteriormente se realizó un análisis de los métodos de minería comparando cada uno de ellos con el fin de seleccionar el que ayude al desarrollo del proyecto, eligiendo el método Crisp-dm ya que contiene múltiples fases que indican cada actividad a completar, convirtiéndose así en una práctica guía. Además, se desarrolló un análisis comparativo teniendo en cuenta las características de las herramientas de minería de datos en las que se seleccionó RapidMiner para realizar los procesos utilizando algunos algoritmos junto con los datos del alumno que se dividieron en dos conjuntos para capacitación y validación, dando como resultado el árbol de decisión como el mejor algoritmo para este propósito, ya que clasificó correctamente las instancias con un margen de error mínimo.
dc.formatapplication/pdf
dc.languageeng
dc.publisherProcedia Computer Science
dc.relationhttps://doi.org/10.1016/j.procs.2019.08.082
dc.relationViloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.
dc.relationBallesteros Román, A.: Minería de Datos Educativa Aplicada a la Investigación de Patrones de Aprendizaje en Estudiante en Ciencias. Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, México City (2012).
dc.relationBen Salem, S., Naouali, S., Chtourou, Z., 2018. A fast and effective partitional clustering algorithm for large categorical datasets using a k-means based approach. Comput. Electr. Eng. 68, 463–483. https://doi.org/10.1016/j.compeleceng.2018.04.023.
dc.relationChakraborty, S., Das, S., 2018. Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian means algorithm. Stat. Probab. Lett. 137, 148– 156. https://doi.org/10.1016/j.spl.2018.01.015
dc.relationAbdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M., 2018. Inice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (Ny). https://doi.org/10.1016/j.ins.2018.07.034
dc.relationRahman, M.A., Islam, M.Z., Bossomaier, T., 2015. ModEx and Seed-Detective: Two novel techniques for high quality clustering by using good initial seeds in K-Means. J. King Saud Univ. - Comput. Inf. Sci. 27, 113–128. https://doi.org/10.1016/j.jksuci.2014.04.002
dc.relationRahman, M.A., Islam, M.Z., 2014. A hybrid clustering technique combining a novel genetic algorithm with K-Means. Knowledge-Based Syst. 71, 345–365.
dc.relationRamadas, M., Abraham, A., Kumar, S., 2016. FSDE-Forced Strategy Differential Evolution used for data clustering. J. King Saud Univ. - Comput. Inf. Sci. https://doi.org/10.1016/j.jksuci.2016.12.005
dc.relationYaqian, Z., Chai, Q.H., Boon, G.W., 2017. Curvature-based method for determining the number of clusters. Inf. Sci. (Ny). https://doi.org/10.1016/j.ins.2017.05.024
dc.relationTîrnăucă, C., Gómez-Pérez, D., Balcázar, J.L., Montaña, J.L., 2018. Global optimality in k-means clustering. Inf. Sci. (Ny). 439–440, 79–94. https://doi.org/10.1016/j.ins.2018.02.001
dc.relationXiang, W., Zhu, N., Ma, S., Meng, X., An, M., 2015. A dynamic shuffled differential evolution algorithm for data clustering. Neurocomputing. https://doi.org/10.1016/j.neucom.2015.01.058
dc.relationTorres-Samuel M., Vásquez C.L., Viloria A., Varela N., Hernández-Fernandez L., Portillo-Medina R. (2018) Analysis of Patterns in the University World Rankings Webometrics, Shanghai, QS and SIR-SCimago: Case Latin America. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.
dc.relationVásquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017)
dc.relationTorres-Samuel M, Carmen Vásquez, Amelec Viloria, Tito Crissien Borrero, Noel Varela, Danelys Cabrera, Mercedes GaitánAngulo, Jenny-Paola Lis-Gutiérrez. (2018). Efficiency Analysis of the Visibility of Latin American Universities and Their Impact on the Ranking Web. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.
dc.relationPiotrowski, A.P., 2017. Review of Differential Evolution population size. Swarm Evol. Comput. 32, 1–24. https://doi.org/10.1016/j.swevo.2016.05.003
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectData mining
dc.subjectClassification technique
dc.subjectModel algorithm
dc.subjectMethodology
dc.subjectMinería de datos
dc.subjectTécnica de clasificación
dc.subjectModelo algoritmo
dc.subjectMetodología
dc.titleDeterminating student interactions in a virtual learning environment using data mining
dc.titleDeterminación de las interacciones de los estudiantes en un entorno de aprendizaje virtual mediante minería de datos
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución