dc.relation | [1] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron
symmetry,” Phys. Rev. D, vol. 2, pp. 1285–1292, (1970).
[2] M. A. Perez, G. Tavares-Velasco, and J. J. Toscano, “New physics effects in rare Z decays,”
Int. J. Mod. Phys, vol. A19, pp. 159–178, (2004). [arXiv:hep-ph/0305227].
[3] F. Larios, R. Martinez, and M. A. Perez, “New physics effects in the flavor-changing neutral
couplings of the top quark,” Int. J. Mod. Phys, vol. A21, pp. 3473–3494, (2006). [arXiv:hepph/0605003].
[4] V. Khachatryan et al., “Search for Lepton-Flavour-Violating Decays of the Higgs Boson,”
Phys. Lett, vol. B749, pp. 337–362, (2015). [arXiv:hep-ex/1502.07400].
[5] G. Aad et al., “Search for lepton-flavour-violating H → µτ decays of the Higgs boson with
the ATLAS detector,” JHEP, vol. 11, p. 211, (2015). [arXiv:hep-ex/1508.03372].
[6] A. Pilaftsis, “Lepton flavour nonconservation in h
0 decays,” Physics Letters B, vol. 285,
no. 1, pp. 68–74, (1992).
[7] L. Diaz-Cruz and J. J. Toscano, “Lepton flavor violating decays of Higgs bosons beyond
the standard model,” Phys. Rev, vol. D62, p. 116005, (2000). [arXiv:hep-ph/9910233].
[8] C. Alvarado et al., “Minimal models of loop-induced lepton flavor violation in Higgs boson
decays,” Phys. Rev, vol. D94, no. 7, p. 075010, (2016). [arXiv:hep-ph/1602.08506].
[9] J. Lee and K. Lee, “Bs → µτ and h → µτ decays in the general two Higgs doublet model,”
2016. [arXiv:hep-ph/1612.04057].
[10] A. Lami and P. Roig, “H → ``0
in the simplest little Higgs model,” Phys. Rev, vol. D94,
no. 5, p. 056001, (2016). [arXiv:hep-ph/1603.09663].
[11] J. Herrero-Garcia et al., “Full parameter scan of the Zee model: exploring Higgs lepton
flavor violation,” Journal of High Energy Physics, vol. 2017, p. 130, Apr 2017. [arXiv:hepph/1701.05345v2].
[12] D. Aristizabal Sierra and A. Vicente, “”Explaining the CMS Higgs flavor-violating decay
excess”,” Phys. Rev. D, vol. 90, p. 115004, Dec 2014. [arXiv:hep-ph/1409.7690v2].
[13] D. Das and A. Kundu, “Two hidden scalars around 125 GeV and h → µτ ,” Phys. Rev. D,
vol. 92, p. 015009, Jul 2015. [arXiv:hep-ph/1504.01125v2].
[14] “Observation of the SM scalar boson decaying to a pair of τ leptons with the CMS
experiment at the LHC,” Tech. Rep. CMS-PAS-HIG-16-043, CERN, Geneva, (2017).
[15] F. del Aguila et al., “Lepton Flavor Changing Higgs decays in the Littlest Higgs Model
with T-parity,” (2017). [arXiv:hep-ph/1705.08827].
[16] S. Chamorro-Solano, A. Moyotl, and M. A. Perez, “The decay h → µτ in the Littlest Higgs
Model with T-parity,” J. Phys. Conf. Ser, vol. 761, no. 1, p. 012051, (2016).
[17] A. Moyotl, S. Chamorro-Solano, and M. Perez, “The h → µτ decay in a two higgs doublet
model with a fourth generation of fermions,” Nucl. Particle Phys. Proce, vol. 287-288,
pp. 205–207, (2017). The 14th International Workshop on Tau Lepton Physics.
[18] F. J. Botella, G. C. Branco, M. Nebot, and M. N. Rebelo, “Flavour Changing Higgs
Couplings in a Class of Two Higgs Doublet Models,” Eur. Phys. J, vol. C76, no. 3, p. 161,
(2016). [arXiv:hep-ph/1508.05101].
[19] M. Sher and K. Thrasher, “Flavor Changing Leptonic Decays of Heavy Higgs Bosons,”
Phys. Rev, vol. D93, no. 5, p. 055021, (2016). [arXiv:hep-ph/1601.03973].
[20] O. Eberhardt, A. Lenz, and J. Rohrwild, “Less space for a new family of fermions,” Phys.
Rev. D, vol. 82, no. 20, p. 095006, 2010. [arXiv:hep-ph]/1005.3505v31].
[21] C. Patrignani et al., “Review of Particle Physics,” Chin. Phys, vol. C40, no. 10, p. 100001,
(2016).
[22] O. Eberhardt et al., “Status of the fourth fermion generation before ICHEP2012: Higgs data
and electroweak precision observables,” Phys. Rev, vol. D86, p. 074014, (2012). [arXiv:hepph/1207.0438].
[23] O. Eberhardt et al., “Impact of a Higgs Boson at a Mass of 126 GeV on the Standard
Model with Three and Four Fermion Generations,” Phys. Rev. Lett., vol. 109, p. 241802,
Dec 2012.
[24] Q. Li et al., “Higgs Boson Production via Gluon Fusion in the Standard Model with four
Generations,” Phys. Rev. D, vol. 83, p. 094018, May 2011. [arXiv:hep-ph/1011.4484].
[25] S. Bar-Shalom, S. Nandi, and A. Soni, “Two Higgs doublets with 4th generation fermions -
models for TeV-scale compositeness,” Phys. Rev, vol. D84, p. 053009, (2011). [arXiv:hepph/1105.6095].
[26] M. Hashimoto, “Constraints on the mass spectrum of fourth generation fermions and higgs
bosons,” Phys. Rev. D, vol. 81, p. 075023, Apr (2010).
[27] M. Baak et al., “Updated status of the global electroweak fit and constraints on new
physics,” Eur. Phys. J. C, vol. 72, no. 5, p. 2003, (2012).
[28] S. Banerjee, M. Frank, and S. K. Rai, “Higgs data confronts Sequential Fourth Generation
Fermions in the Higgs Triplet Model,” Phys. Rev., vol. D89, no. 7, p. 075005, (2014).
[arXiv/hep-ph:1312.4249].
[29] N. Chen and H.-J. He, “LHC Signatures of Two-Higgs-Doublets with Fourth Family,”
JHEP, vol. 04, p. 062, (2012). [arXiv/hep-ph:1202.3072].
[30] D. Das, A. Kundu, and I. Saha, “Higgs data does not rule out a sequential fourth
generation,” (2017). [arXiv/hep-ph:1707.03000].
[31] S. Bar-Shalom and A. Soni, “Chiral heavy fermions in a two Higgs doublet model: 750 GeV
resonance or not,” Physics Letters B, vol. 766, pp. 1 – 10, (2017). [arXiv:1607.04643].
[32] S. Kanemura, M. Kikuchi, and K. Yagyu, “Fingerprinting the extended Higgs sector using
one-loop corrected Higgs boson couplings and future precision measurements,” Nucl. Phys,
vol. B896, pp. 80–137, (2015). [arXiv:hep-ph/1502.07716].
[33] L. Bellantoni et al., “Masses of a Fourth Generation with Two Higgs Doublets,” Phys. Rev,
vol. D86, p. 034022, (2012). [arXiv:hep-ph/1205.5580].
[34] A. Denner et al., “Higgs Production and Decay with a Fourth Standard-Model-Like Fermion
Generation,” Eur. Phys. J, vol. C72, p. 1992, (2012). [arXiv:hep-ph/1111.6395].
[35] A. Dighe et al., “Large mass splittings for fourth generation fermions allowed by LHC Higgs
exclusion,” Phys. Rev, vol. D85, p. 114035, (2012). [arXiv:hep-ph/1204.3550].
[36] G. Aad et al., “Search for charged Higgs bosons through the violation of lepton universality
in tt¯ events using pp collision data at √
s = 7 TeV with the ATLAS experiment,” JHEP,
vol. 03, p. 076, (2013). [arXiv:hep-ex/1212.3572].
[37] G. Aad et al., “Search for a CP-odd Higgs boson decaying to Zh in pp collisions at √
s = 8
TeV with the ATLAS detector,” Phys. Lett, vol. B744, pp. 163–183, (2015). [arXiv:hepex/1502.04478].
[38] G. Aad et al., “Search for an additional, heavy Higgs boson in the H → ZZ decay channel
at √
s = 8 TeV in pp collision data with the ATLAS detector,” Eur. Phys. J, vol. C76,
no. 1, p. 45, (2016). [arXiv:hep-ex/1507.05930].
[39] V. Khachatryan et al., “Searches for heavy Higgs bosons in two-Higgs-doublet models and
for t → ch decay using multilepton and diphoton final states in pp collisions at 8 TeV,”
Phys. Rev, vol. D90, p. 112013, (2014). [arXiv:hep-ex/1410.2751].
[40] V. Khachatryan et al., “Search for a pseudoscalar boson decaying into a Z boson and the
125 GeV Higgs boson in `
+`
−bb final states,” Phys. Lett, vol. B748, pp. 221–243, (2015).
[arXiv:hep-ex/1504.04710].
[41] V. Khachatryan et al., “Search for diphoton resonances in the mass range from 150 to
850 GeV in pp collisions at √
s = 8 TeV,” Phys. Lett, vol. B750, pp. 494–519, (2015).
[arXiv:hep-ex/1506.02301].
[42] V. Khachatryan et al., “Search for a charged Higgs boson in pp collisions at √
s = 8 TeV,”
JHEP, vol. 11, p. 018, (2015). [arXiv:hep-ex/1508.07774].
[43] V. Khachatryan et al., “Searches for a heavy scalar boson H decaying to a pair of 125 GeV
Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states
with h → τ τ ,” Phys. Lett, vol. B755, pp. 217–244, (2016). [arXiv:hep-ex/1510.01181].
[44] A. G. Akeroyd et al., “Prospects for charged higgs searches at the lhc,” Eur. Phys. J. C,
vol. 77, no. 5, p. 276, (2017).
[45] M. Geller et al., “The 125 GeV Higgs in the context of four generations with 2 Higgs
doublets,” Phys. Rev, vol. D86, p. 115008, (2012). [arXiv:hep-ph/1209.4081].
[46] S. Bar-Shalom, S. Nandi, and A. Soni, “Muon g − 2 and lepton flavor violation in a two
Higgs doublets model for the fourth generation,” Phys. Lett, vol. B709, pp. 207–217, (2012).
[arXiv:hep-ph/1112.3661].
[47] M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon
Anomalous Magnetic Moment and Lepton Flavor Violation,” (2016). [arXiv/hepph:1610.06587].
[48] J. Heeck, M. Holthausen, W. Rodejohann, and Y. Shimizu, “h → µτ in Abelian and
non-Abelian flavor symmetry models,” Nuclear Physics B, vol. 896, pp. 281–310, (2015).
[arXiv:hep-ph/1412.3671].
[49] M. Campos, A. C´arcamo Hern´andez, H. P¨as, and E. Schumacher, “Higgs → µτ as an
indication for S4 flavor symmetry,” Phys. Rev. D, vol. 91, p. 116011, Jun (2015). [arXiv:hepph/1408.1652].
[50] M. Aoki, S. Kanemura, K. Sakurai, and H. Sugiyama, “Testing neutrino mass generation
mechanisms from the lepton flavor violating decay of the Higgs boson,” Physics Letters B,
vol. 763, pp. 352 – 357, (2016). [arXiv:hep-ph/1607.08548].
[51] S. Baek, T. Nomura, and H. Okada, “An explanation of one-loop induced h → µτ decay,”
Physics Letters B, vol. 759, pp. 91 – 98, (2016). [arXiv:hep-ph/1604.03738].
[52] L. Wang, S. Yang, and X. Han, “h → µτ and muon g − 2 in the alignment limit of
two-Higgs-doublet model,” Nuclear Physics B, vol. 919, pp. 123 – 141, (2017). [arXiv:hepph/1606.04408]. | |