dc.creatorChamorro Solano, Sindy Mirella
dc.creatorMoyotl, A
dc.creatorPerez Angon, Miguel Angel
dc.date2018-11-16T23:40:50Z
dc.date2018-11-16T23:40:50Z
dc.date2018-06
dc.date.accessioned2023-10-03T20:11:55Z
dc.date.available2023-10-03T20:11:55Z
dc.identifier09543899
dc.identifierhttp://hdl.handle.net/11323/1204
dc.identifierDOI: 10.1088/1361-6471/aac458
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174745
dc.descriptionWe analyze the flavor changing decay h → μt in the framework of a two Higgs doublet model with a fourth generation of fermions (4G2HDM) which couples only to the heavy scalar doublet. We find that the respective branching ratio at one-loop level can reach values as high as 10-4-10-6 for masses of 300 GeV-1 TeV for the heavy leptons in the fourth family and the new heavy Higgs bosons. These radiative corrections are of the same order of magnitude as the tree level prediction of the 4G2HDM.
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Physics G: Nuclear And Particle Physics
dc.relation[1] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry,” Phys. Rev. D, vol. 2, pp. 1285–1292, (1970). [2] M. A. Perez, G. Tavares-Velasco, and J. J. Toscano, “New physics effects in rare Z decays,” Int. J. Mod. Phys, vol. A19, pp. 159–178, (2004). [arXiv:hep-ph/0305227]. [3] F. Larios, R. Martinez, and M. A. Perez, “New physics effects in the flavor-changing neutral couplings of the top quark,” Int. J. Mod. Phys, vol. A21, pp. 3473–3494, (2006). [arXiv:hepph/0605003]. [4] V. Khachatryan et al., “Search for Lepton-Flavour-Violating Decays of the Higgs Boson,” Phys. Lett, vol. B749, pp. 337–362, (2015). [arXiv:hep-ex/1502.07400]. [5] G. Aad et al., “Search for lepton-flavour-violating H → µτ decays of the Higgs boson with the ATLAS detector,” JHEP, vol. 11, p. 211, (2015). [arXiv:hep-ex/1508.03372]. [6] A. Pilaftsis, “Lepton flavour nonconservation in h 0 decays,” Physics Letters B, vol. 285, no. 1, pp. 68–74, (1992). [7] L. Diaz-Cruz and J. J. Toscano, “Lepton flavor violating decays of Higgs bosons beyond the standard model,” Phys. Rev, vol. D62, p. 116005, (2000). [arXiv:hep-ph/9910233]. [8] C. Alvarado et al., “Minimal models of loop-induced lepton flavor violation in Higgs boson decays,” Phys. Rev, vol. D94, no. 7, p. 075010, (2016). [arXiv:hep-ph/1602.08506]. [9] J. Lee and K. Lee, “Bs → µτ and h → µτ decays in the general two Higgs doublet model,” 2016. [arXiv:hep-ph/1612.04057]. [10] A. Lami and P. Roig, “H → ``0 in the simplest little Higgs model,” Phys. Rev, vol. D94, no. 5, p. 056001, (2016). [arXiv:hep-ph/1603.09663]. [11] J. Herrero-Garcia et al., “Full parameter scan of the Zee model: exploring Higgs lepton flavor violation,” Journal of High Energy Physics, vol. 2017, p. 130, Apr 2017. [arXiv:hepph/1701.05345v2]. [12] D. Aristizabal Sierra and A. Vicente, “”Explaining the CMS Higgs flavor-violating decay excess”,” Phys. Rev. D, vol. 90, p. 115004, Dec 2014. [arXiv:hep-ph/1409.7690v2]. [13] D. Das and A. Kundu, “Two hidden scalars around 125 GeV and h → µτ ,” Phys. Rev. D, vol. 92, p. 015009, Jul 2015. [arXiv:hep-ph/1504.01125v2]. [14] “Observation of the SM scalar boson decaying to a pair of τ leptons with the CMS experiment at the LHC,” Tech. Rep. CMS-PAS-HIG-16-043, CERN, Geneva, (2017). [15] F. del Aguila et al., “Lepton Flavor Changing Higgs decays in the Littlest Higgs Model with T-parity,” (2017). [arXiv:hep-ph/1705.08827]. [16] S. Chamorro-Solano, A. Moyotl, and M. A. Perez, “The decay h → µτ in the Littlest Higgs Model with T-parity,” J. Phys. Conf. Ser, vol. 761, no. 1, p. 012051, (2016). [17] A. Moyotl, S. Chamorro-Solano, and M. Perez, “The h → µτ decay in a two higgs doublet model with a fourth generation of fermions,” Nucl. Particle Phys. Proce, vol. 287-288, pp. 205–207, (2017). The 14th International Workshop on Tau Lepton Physics. [18] F. J. Botella, G. C. Branco, M. Nebot, and M. N. Rebelo, “Flavour Changing Higgs Couplings in a Class of Two Higgs Doublet Models,” Eur. Phys. J, vol. C76, no. 3, p. 161, (2016). [arXiv:hep-ph/1508.05101]. [19] M. Sher and K. Thrasher, “Flavor Changing Leptonic Decays of Heavy Higgs Bosons,” Phys. Rev, vol. D93, no. 5, p. 055021, (2016). [arXiv:hep-ph/1601.03973]. [20] O. Eberhardt, A. Lenz, and J. Rohrwild, “Less space for a new family of fermions,” Phys. Rev. D, vol. 82, no. 20, p. 095006, 2010. [arXiv:hep-ph]/1005.3505v31]. [21] C. Patrignani et al., “Review of Particle Physics,” Chin. Phys, vol. C40, no. 10, p. 100001, (2016). [22] O. Eberhardt et al., “Status of the fourth fermion generation before ICHEP2012: Higgs data and electroweak precision observables,” Phys. Rev, vol. D86, p. 074014, (2012). [arXiv:hepph/1207.0438]. [23] O. Eberhardt et al., “Impact of a Higgs Boson at a Mass of 126 GeV on the Standard Model with Three and Four Fermion Generations,” Phys. Rev. Lett., vol. 109, p. 241802, Dec 2012. [24] Q. Li et al., “Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations,” Phys. Rev. D, vol. 83, p. 094018, May 2011. [arXiv:hep-ph/1011.4484]. [25] S. Bar-Shalom, S. Nandi, and A. Soni, “Two Higgs doublets with 4th generation fermions - models for TeV-scale compositeness,” Phys. Rev, vol. D84, p. 053009, (2011). [arXiv:hepph/1105.6095]. [26] M. Hashimoto, “Constraints on the mass spectrum of fourth generation fermions and higgs bosons,” Phys. Rev. D, vol. 81, p. 075023, Apr (2010). [27] M. Baak et al., “Updated status of the global electroweak fit and constraints on new physics,” Eur. Phys. J. C, vol. 72, no. 5, p. 2003, (2012). [28] S. Banerjee, M. Frank, and S. K. Rai, “Higgs data confronts Sequential Fourth Generation Fermions in the Higgs Triplet Model,” Phys. Rev., vol. D89, no. 7, p. 075005, (2014). [arXiv/hep-ph:1312.4249]. [29] N. Chen and H.-J. He, “LHC Signatures of Two-Higgs-Doublets with Fourth Family,” JHEP, vol. 04, p. 062, (2012). [arXiv/hep-ph:1202.3072]. [30] D. Das, A. Kundu, and I. Saha, “Higgs data does not rule out a sequential fourth generation,” (2017). [arXiv/hep-ph:1707.03000]. [31] S. Bar-Shalom and A. Soni, “Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not,” Physics Letters B, vol. 766, pp. 1 – 10, (2017). [arXiv:1607.04643]. [32] S. Kanemura, M. Kikuchi, and K. Yagyu, “Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements,” Nucl. Phys, vol. B896, pp. 80–137, (2015). [arXiv:hep-ph/1502.07716]. [33] L. Bellantoni et al., “Masses of a Fourth Generation with Two Higgs Doublets,” Phys. Rev, vol. D86, p. 034022, (2012). [arXiv:hep-ph/1205.5580]. [34] A. Denner et al., “Higgs Production and Decay with a Fourth Standard-Model-Like Fermion Generation,” Eur. Phys. J, vol. C72, p. 1992, (2012). [arXiv:hep-ph/1111.6395]. [35] A. Dighe et al., “Large mass splittings for fourth generation fermions allowed by LHC Higgs exclusion,” Phys. Rev, vol. D85, p. 114035, (2012). [arXiv:hep-ph/1204.3550]. [36] G. Aad et al., “Search for charged Higgs bosons through the violation of lepton universality in tt¯ events using pp collision data at √ s = 7 TeV with the ATLAS experiment,” JHEP, vol. 03, p. 076, (2013). [arXiv:hep-ex/1212.3572]. [37] G. Aad et al., “Search for a CP-odd Higgs boson decaying to Zh in pp collisions at √ s = 8 TeV with the ATLAS detector,” Phys. Lett, vol. B744, pp. 163–183, (2015). [arXiv:hepex/1502.04478]. [38] G. Aad et al., “Search for an additional, heavy Higgs boson in the H → ZZ decay channel at √ s = 8 TeV in pp collision data with the ATLAS detector,” Eur. Phys. J, vol. C76, no. 1, p. 45, (2016). [arXiv:hep-ex/1507.05930]. [39] V. Khachatryan et al., “Searches for heavy Higgs bosons in two-Higgs-doublet models and for t → ch decay using multilepton and diphoton final states in pp collisions at 8 TeV,” Phys. Rev, vol. D90, p. 112013, (2014). [arXiv:hep-ex/1410.2751]. [40] V. Khachatryan et al., “Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in ` +` −bb final states,” Phys. Lett, vol. B748, pp. 221–243, (2015). [arXiv:hep-ex/1504.04710]. [41] V. Khachatryan et al., “Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at √ s = 8 TeV,” Phys. Lett, vol. B750, pp. 494–519, (2015). [arXiv:hep-ex/1506.02301]. [42] V. Khachatryan et al., “Search for a charged Higgs boson in pp collisions at √ s = 8 TeV,” JHEP, vol. 11, p. 018, (2015). [arXiv:hep-ex/1508.07774]. [43] V. Khachatryan et al., “Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with h → τ τ ,” Phys. Lett, vol. B755, pp. 217–244, (2016). [arXiv:hep-ex/1510.01181]. [44] A. G. Akeroyd et al., “Prospects for charged higgs searches at the lhc,” Eur. Phys. J. C, vol. 77, no. 5, p. 276, (2017). [45] M. Geller et al., “The 125 GeV Higgs in the context of four generations with 2 Higgs doublets,” Phys. Rev, vol. D86, p. 115008, (2012). [arXiv:hep-ph/1209.4081]. [46] S. Bar-Shalom, S. Nandi, and A. Soni, “Muon g − 2 and lepton flavor violation in a two Higgs doublets model for the fourth generation,” Phys. Lett, vol. B709, pp. 207–217, (2012). [arXiv:hep-ph/1112.3661]. [47] M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” (2016). [arXiv/hepph:1610.06587]. [48] J. Heeck, M. Holthausen, W. Rodejohann, and Y. Shimizu, “h → µτ in Abelian and non-Abelian flavor symmetry models,” Nuclear Physics B, vol. 896, pp. 281–310, (2015). [arXiv:hep-ph/1412.3671]. [49] M. Campos, A. C´arcamo Hern´andez, H. P¨as, and E. Schumacher, “Higgs → µτ as an indication for S4 flavor symmetry,” Phys. Rev. D, vol. 91, p. 116011, Jun (2015). [arXiv:hepph/1408.1652]. [50] M. Aoki, S. Kanemura, K. Sakurai, and H. Sugiyama, “Testing neutrino mass generation mechanisms from the lepton flavor violating decay of the Higgs boson,” Physics Letters B, vol. 763, pp. 352 – 357, (2016). [arXiv:hep-ph/1607.08548]. [51] S. Baek, T. Nomura, and H. Okada, “An explanation of one-loop induced h → µτ decay,” Physics Letters B, vol. 759, pp. 91 – 98, (2016). [arXiv:hep-ph/1604.03738]. [52] L. Wang, S. Yang, and X. Han, “h → µτ and muon g − 2 in the alignment limit of two-Higgs-doublet model,” Nuclear Physics B, vol. 919, pp. 123 – 141, (2017). [arXiv:hepph/1606.04408].
dc.rightsAtribución – No comercial – Compartir igual
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectFlavor changing neutral currents
dc.subjectFourth family
dc.subjectHiggs boson
dc.subjectRadiative corrections
dc.titleLepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución