dc.creatorSilva Oliveira, Luis Felipe
dc.creatorSchneider, Ismael
dc.creatorArtaxo, Paulo
dc.creatorNúñez-Blanco, Yuleisy
dc.creatorPinto, Diana
dc.creatorFlores, Érico M. M.
dc.creatorGómez Plata, leandro
dc.creatorRamírez, Omar
dc.creatorDotto, Guilherme Luiz
dc.date2020-12-18T18:58:42Z
dc.date2020-12-18T18:58:42Z
dc.date2020-12-17
dc.date.accessioned2023-10-03T20:11:54Z
dc.date.available2023-10-03T20:11:54Z
dc.identifier1674-9871
dc.identifierhttps://hdl.handle.net/11323/7614
dc.identifierhttps://doi.org/10.1016/j.gsf.2020.11.012
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174742
dc.descriptionAir pollution has become an important issue, especially in Caribbean urban areas, and, particulate matter (PM) emitted by different natural and anthropogenic sources causes environmental and health issues. In this work, we studied the concentrations of PM10 and PM2.5 sources in an industrial and port urban area in the Caribbean region of Colombia. PM samples were collected within 48-h periods between April and October 2018 by using a Partisol 2000i-D sampler. Elemental geochemical characterization was performed by X-ray fluorescence (XRF) analysis. Further, ionic species and black carbon (BC) were quantified by ion chromatography and reflectance spectroscopy, respectively. Using the Positive Matrix Factorization (PMF) receptor model, the contributions of PM sources were quantified. The average concentration of PM10 was 46.6 ± 16.2 μg/m3, with high concentrations of Cl and Ca. For PM2.5, the average concentration was 12.0 ± 3.2 μg/m3, and the most abundant components were BC, S, and Cl. The receptor model identified five sources for PM10 and PM2.5. For both fractions, the contributions of marine sea spray, re-suspended soil, and vehicular traffic were observed. In addition, PM2.5 included two mixed sources were found to be fuel oil combustion with fertilizer industry emissions, and secondary aerosol sources with building construction emissions. Further, PM10 was found to also include building construction emissions with re-suspended soil, and metallurgical industry emissions. These obtained geochemical atmospheric results are important for the implementation of strategies for the continuous improvement of the air quality of the Caribbean region.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Sehn, J.L., Ramos, C.G., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543(A), 161–170. https://doi.org/10.1016/j.scitotenv.2015.11.030.
dc.relationAlcaldía de Barranquilla, 2020. Conoce a Barranquilla. https://www.barranquilla.gov.co/descubre/conoce-a-barranquilla
dc.relationAldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 102(1–2), 191–205. https://doi.org/10.1016/j.atmosres.2011.07.003.
dc.relationAmato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., Bruge, B., Verlhac, S., Orza, J.A.G., Bonnaire, N., Le Priol, T., Petit, J.F., Sciare, J., 2016. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 129, 114–124. https://doi.org/10.1016/j.atmosenv.2016.01.022.
dc.relationArana, A., Artaxo, P., 2014. Elementary composition of atmospheric aerosol in the central region of the Amazon basin. Quim. Nova. 37(2), 268–276. https://doi.org/10.5935/01004042.20140046.
dc.relationArchanjo, B.S., Araujo, J.R., Silva, A.M., Capaz, R.B., Falcão, N.P.S., Jorio, A., Achete, C.A., 2014. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils. Environ. Sci. Technol. 48(13), 7445–7452. https://doi.org/10.1021/es501046b.
dc.relationArick, D.Q., Choi, Y.H., Kim, H.C., Won, Y.Y., 2015. Effects of nanoparticles on the mechanical functioning of the lung. Adv. Colloid Interf. Advances in Colloid & Interface ence 225 , 218-228.
dc.relationArgumedo, C.D., Castillo, J.F., 2016. Chemical characterization of particulated atmospheric matter PM10 in Guajira, Colombia. Rev. Colomb. Quim. 45(2), 19–29. https://doi.org/10.15446/rev.colomb.quim.v45n2.56991.
dc.relationBadillo-Castañeda, C.T., Garza-Ocañas, L., Garza-Ulloa, M.H., Zanatta-Calderón, M.T., Caballero-Quintero, A., 2015. Heavy metal content in PM2. 5 air samples collected in the Metropolitan Area of Monterrey, México. Hum. Ecol. Risk Assess. 21 (8), 20222035.
dc.relationBhuyan, P., Deka, P., Prakash, A., Balachandran, S., Hoque, R.R., 2018. Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environ. Pollut. 234, 997–1010. https://doi.org/10.1016/j.envpol.2017.12.009.
dc.relationBlanco-Becerra, L.C., Gáfaro-Rojas, A.I., Rojas-Roa, N.Y., 2015. Influence of precipitation scavenging on the PM2.5/PM10 ratio at the Kennedy locality of Bogotá, Colombia. Rev. Fac. Ing. 76, 58–65. https://doi.org/10.17533/udea.redin.n76a07.
dc.relationBourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F., 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11), 634-642.
dc.relationBrito, J., Rizzo, L.V., Herckes, P., Vasconcellos, P.C., Caumo, S.E.S., Fornaro, A., Ynoue, R.Y., Artaxo, P., Andrade, M.F., 2013. Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmos. Chem. Phys. 13(24), 12199–12213. https://doi.org/10.5194/acp-13-12199-2013.
dc.relationCáceres, J.O., Sanz-Mangas, D., Manzoor, S., Pérez-Arribas, L.V., Anzano, J., 2019. Quantification of particulate matter, tracking the origin and relationship between elements for the environmental monitoring of the Antarctic region. Sci. Total Environ. 665, 125–132. https://doi.org/10.1016/j.scitotenv.2019.02.116.
dc.relationCanales-Rodríguez, M.A., Quintero-Núñez, M., Castro-Romero, T.G., García-Cuento, R.O., 2014. Chemical Composition of Inhalable Particles PM10 in the Urban and Rural Area of Mexicali, Baja California in México. Inf. Tecnol. 25(6), 13–22. https://doi.org/10.4067/S0718-07642014000600003.
dc.relationCastillo-Ramírez, M.C., Berdejo, J., Saltarín, M., 2018. Informe anual de Calidad de Aire de Barranquilla (in Spanish). http://barranquillaverde.gov.co/calidad-del-aire
dc.relationCereceda-Balic F., Toledo M., Vidal V., Guerrero F., Diaz-Robles L.A., Petit-Breuilh X., Lapuerta M., 2017. Emission factors for PM2. 5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE. Sci. Total Environ. 584, 901-910.
dc.relationCesari, D., De Benedetto, G.E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F.M., Marinoni, A., Pennetta, A., Contini, D., 2018. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci. Total Environ. 612, 202–213. https://doi.org/10.1016/j.scitotenv.2017.08.230.
dc.relationChen, C., Liu, S., Dong, W., Zhao, B., Deng, F., 2021. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. Science of the Total Environment 751,141726.
dc.relationCheung, K.L., Ntziachristos, L., Tzamkiozis, T., Schauer, J.J., Samaras, Z., Moore, K.F., Sioutas, C., 2010. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci. Tech. 44(7), 500–513. https://doi.org/10.1080/02786821003758294.
dc.relationCIOH - Centro de Investigaciones Oceanográficas e Hidrográficas, 2007. Climatologia de los principales puertos del Caribe Colombiano – Barranquilla (in Spanish). https://www.cioh.org.co/derrotero/images/PDFExternos/Climatologia_Barranquilla.pdf
dc.relationCui, X.X., Li, F., Xiang, J.B., Fang, L., Chung, M.K., Day, D.B., Mo, J.H., Weschler, C.J., Gong, J.C., He, L.C., Zhu, D., Lu, C.J., Han, H.L., Zhang, Y.P., Zhang, J.F., 2018. Cardiopulmonary effects of overnight indoor air filtration in healthy non-smoking adults: a double-blind randomized crossover study. Environ. Int. 114, 27-36,
dc.relationContini, D., Cesari, D., Conte, M., Donateo, A., 2016. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Sci. Total Environ. 560–561, 131–140. https://doi.org/10.1016/j.scitotenv.2016.04.031.
dc.relationContini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., Guascito, M.R., 2010. Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos. Res. 95(1), 40–54. https://doi.org/10.1016/j.atmosres.2009.07.010.
dc.relationDelicado, P., 2008. Curso de Modelos no Paramétricos. http://www- eio.upc.es/~delicado/docencia/Apuntes_Models_No_Parametrics.pdf (in Portugues)
dc.relationDuarte, A.L., DaBoit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geoscience Frontiers 10, 927-939.
dc.relationFarahmandkia, Z., Moattar, F., Zayeri, F., Sekhavatjou, M.S., Mansouri, N., 2017. Contribution of point and small-scaled sources to the PM10 emission using positive matrix factorization model. J. Environ. Health Sci. Engineer. 15, 2. https://doi.org/10.1186/s40201-016-0265-8.
dc.relationGao, J., Peng, X., Chen, G., Xu, J., Shi, G.L., Zhang, Y.C., Feng, Y.C., 2016. Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution. Sci. Total Environ. 542(A), 162–171. https://doi.org/10.1016/j.scitotenv.2015.10.082.
dc.relationGautam, S., Patra, A.K., Sahu, S.P., Hitch, M., 2018. Particulate matter pollution in opencast coal mining areas: a threat to human health and environment. Int. J. Min. Reclam. Env. 32(2), 75–92. https://doi.org/10.1080/17480930.2016.1218110.
dc.relationGu, J., Du, S., Han, D., Hou, L., Yi, J., Xu, J., Liu, G., Han, B., Yang, G., Bai, Z.P., 2014. Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China. Air Qual. Atmos. Health 7, 251–262. https://doi.org/10.1007/s11869-0130232-9.
dc.relationHao, Y., Meng, X., Yu, X., Lei, M., Li, W., Shi, F., Yang, W., Zhang, S., Xie, S., 2018. Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmos. Res. 213, 550–561. https://doi.org/10.1016/j.atmosres.2018.07.006.
dc.relationHopke, P.K., 2003. A guide to Positive Matrix Factorization. http://www.epa.gov/ttnamti1/files/ambient/pm25/workshop/laymen.pdf
dc.relationIDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales, 2018. Informe del Estado de la Calidad del Aire en Colombia 2017 (in Spanish). http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estadode-la-calidad-del-aire-en-colombia.
dc.relationJain, S., Sharma, S.K., Mandal, T.K., Saxena, M., 2018. Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 37, 107–118. https://doi.org/10.1016/j.partic.2017.05.009.
dc.relationJaiprakash, H. G., 2017. Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Sci. Total Environ. 586, 900–916. https://doi.org/10.1016/j.scitotenv.2017.02.070.
dc.relationKholod, N., Evans, M., 2016. Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations. Environ. Sci. Policy. 56, 1–8. https://doi.org/10.1016/j.envsci.2015.10.017.
dc.relationKubesch, N.J., Nazelle, A. de, Westerdahl, D., Martinez, D., Carrasco-Turigas, G., Bouso, L., Guerra, S., Nieuwenhuijsen, M.J., 2015. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occup. Environ. Med. 72, 284-293.
dc.relationKumar, R., Chauhan, M., Sharma, N., Chaudhary, G.R., 2018. Toxic effects of nanomaterials on environment. Environmental Toxicity of Nanomaterials, CRC Press, 1- 20.
dc.relationLi, T.C., Yuan, C.S., Huang, H.C., Lee, C.L., Wu, S.P., Tong, C., 2016. Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait. Sci. Rep. 6, 22956. https://doi.org/10.1038/srep22956.
dc.relationLiu, Y., Xing, J., Wang, S., Fu, X., Zheng, H., 2018. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 239, 544–553. https://doi.org/10.1016/j.envpol.2018.04.047.
dc.relationLiu, B., Song, N., Dai, Q., Mei, R., Sui, B., Bi, X., Feng, Y., 2016. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmos. Res. 170, 23–33. https://doi.org/10.1016/j.atmosres.2015.11.002.
dc.relationLópez, M.L., Ceppi, S., Palancar, G.G., Olcese, L.E., Tirao, G., Toselli, B.M., 2011. Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmos. Environ. 45(31), 5450–5457. https://doi.org/10.1016/j.atmosenv.2011.07.003.
dc.relationMaldonado-Arízaga, M.J., 2012. Caracterización del material particulado suspendido PM10 de la red de monitoreo de aire de la ciudad de Quito de los años 2009 y 2010 por Espectroscopía de Absorción Atómica (in Spanish). http://repositorio.puce.edu.ec/handle/22000/7112.
dc.relationMorera-Gómez, Y., Elustondo, D., Lasheras, E., Alonso-Hernández, C. M., Santamaría, J.M., 2018. Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmos. Environ. 192, 182–192. https://doi.org/10.1016/j.atmosenv.2018.08.058.
dc.relationMugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., Aguilar, J., Alcántara, E., 2009. PM composition and source reconciliation in Mexico City. Atmos. Environ. 43(32), 5068–5074. https://doi.org/10.1016/j.atmosenv.2009.06.051.
dc.relationMurillo, J.H., Roman, S.R., Marin, J.F.R., Ramos, A.C., Jimenez, S. B., Gonzalez, B.C., Baumgardner, D.G., 2013. Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmos. Pollut. Res. 4(2), 181–190. https://doi.org/10.5094/APR.2013.018.
dc.relationOrdóñez-Aquino, C., Sánchez-Ccoyllo, O., 2017. Characterization of the PM2,5 chemical - morphological in Lima metropolitan with scanning electronic microscopy (SEM). Rev. Acta. Nova. 8(3), 397–420.
dc.relationPaatero, P., Tapper, U., 1994. Positive matrix factorization: a non–negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126. https://doi.org/10.1002/env.3170050203.
dc.relationPalomino, G., 2016. Motores lineales de imanes permanentes: Principios de funcionamiento y optimización, Programa Editorial Universidad Autónoma de Occidente, Santiago de Cali.(in Spanish),
dc.relationPark, M., Joo, H.S., Lee, K., Jang, M., Kim, S.D., Kim, I., Borlaza, L.J.S., Lim, H., Shin, H., Chung, K.H., Choi, Y.H., Park, S.G., Bae, M.S., Lee, J., Song, H., Park, K., 2018. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 8, 17007. https://doi.org/10.1038/s41598-018-35398-0.
dc.relationPeters, A., Hampel, R., Cyrys, J., Breitner, S., Geruschkat, U., Kraus, U., Zareba, W., Schneider, A., 2015. Elevated particle number concentrations induce immediate changes in heart rate variability: a panel study in individuals with impaired glucose metabolism or diabetes. Part. Fibre. Toxicol. 12, 7.
dc.relationPerrone, M.G., Vratolis, S., Georgieva, E., Török, S., Šega, K., Veleva, B., Osán, J., Bešlić, I., Kertész, Z., Pernigotti, D., Eleftheriadis, K., Belis, C.A., 2018. Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci. Total Environ. 619–620, 1515–1529. https://doi.org/10.1016/j.scitotenv.2017.11.092.
dc.relationPillai, P.S., Babu, S.S., Moorthy, K.K., 2002. A study of PM, PM10 and PM2.5 concentration at a tropical coastal station. Atmos. Res. 61(2), 149–167. https://doi.org/10.1016/S0169-8095(01)00136-3.
dc.relationPolice, S., Sahu, S.K., Tiwari, M., Pandit, G.G., 2018. Chemical composition and source apportionment of PM2.5 and PM2.5–10 in Trombay (Mumbai, India), a coastal industrial area. Particuology. 37, 143–153. https://doi.org/10.1016/j.partic.2017.09.006.
dc.relationPutaud, J.P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, R., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursoc, J., Viana, M., Wiedensohler, A., Raes, F., 2010. A European aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 44(10), 1308–1320. https://doi.org/10.1016/j.atmosenv.2009.12.011.
dc.relationQuerol, X., Alastuey, A., de la Rosa, J., Sánchez de la Campa, A., Plana, F., Ruiz, C.R., 2002. Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmos. Environ. 36(19), 3113–3125. https://doi.org/10.1016/S1352-2310(02)00257-1.
dc.relationQuerol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G., Puig, O., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 35(36), 6407–6419. https://doi.org/10.1016/S1352-2310(01)00361-2.
dc.relationRamírez, O., Sánchez de la Campa, A.M., Amato, F., Catacolí, R.A., Rojas, N., de la Rosa, J., 2018a. Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045.
dc.relationReff, A., Eberly, S.I., Bhave, P. V., 2007. Receptor modeling of ambient particulate matter data using Positive Matrix Factorization: review of existing methods. J. Air Waste Manage. 57(2), 146–154. https://doi.org/10.1080/10473289.2007.10465319.
dc.relationRiojas-Rodríguez, H., da Silva, A.S., Texcalac-Sangrador, J.L., Moreno-Banda, G.L., 2016. Air pollution management and control in Latin America and the Caribbean: implications for climate change. Rev. Panam. Salud Publica 40(3), 150–159. https://www.scielosp.org/article/rpsp/2016.v40n3/150-159/en/.
dc.relationRojano, R., Arregoces, H., Restrepo, G., 2014. Elemental Composition and Sources of Inhalable Particles (PM10) and Suspended Total Particles (TSP) in the Urban Area of the City of Riohacha׳ Colombia. Inf. Tecnol. 25(6), 3–12. https://doi.org/10.4067/S071807642014000600002.
dc.relationSaldarriaga-Molina, J.C., Echeverri-Londoño, C.A., Molina-Pérez, F.J., 2004. Partículas suspendidas (PST) y partículas respirables (PM10) en el Valle de Aburrá, Colombia. Rev. Fac. Ing. Univ. Antioquia. 32, 7–16 (in Spanish). https://www.redalyc.org/articulo.oa?id=430/43003201.
dc.relationSalvador, P., Artíñano, B., Querol, X., Alastuey, A., Costoya, M., 2007. Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. Atmos. Environ. 41(1), 1–17. https://doi.org/10.1016/j.atmosenv.2006.08.007.
dc.relationSalvo, A., Brito, J., Artaxo, P., Geiger, F.M., 2017. Reduced ultrafine particle levels in São Paulo’s atmosphere during shifts from gasoline to ethanol use. Nat. Commun. 8, 77. https://doi.org/10.1038/s41467-017-00041-5.
dc.relationSantos Junior, D.A.M., 2009. Emissões veiculares em São Paulo: Quantificação de fontes com modelos receptores e caracterização do material carbonáceo. São Paulo: Instituto de Física, Universidade de São Paulo, 2015. Dissertação de Mestrado em Física.(in Portuguese) https://doi.org/10.11606/D.43.2015.tde-17072015-135624.
dc.relationSaraga, D.E., Tolis, E.I., Maggos, T., Vasilakos, C., Bartzis, J.G., 2019. PM2.5 source apportionment for the port city of Thessaloniki, Greece. Sci. Total Environ. 650(2), 2337–2354. https://doi.org/10.1016/j.scitotenv.2018.09.250.
dc.relationScerri, M.M., Kandler, K., Weinbruch, S., 2016. Disentangling the contribution of Saharan dust and marine aerosol to PM10 levels in the Central Mediterranean. Atmos. Environ. 147, 395–408. https://doi.org/10.1016/j.atmosenv.2016.10.028.
dc.relationSchneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 6(5), 877–885. https://doi.org/10.5094/APR.2015.097.
dc.relationSilva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020a. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.
dc.relationSilva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020b. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822.
dc.relationSoleimani, M., Amini, N., Sadeghian, B., Wang, D., Fang, L., 2018. Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran. J. Environ. Sci. 72, 166–175. https://doi.org/10.1016/j.jes.2018.01.002.
dc.relationSong, X., Yang, S., Shao, L., Fan, J., Liu, Y., 2016. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Sci. Total Environ. 571, 1155–1163. https://doi.org/10.1016/j.scitotenv.2016.07.115.
dc.relationSouza, I.C., Mendes, V.A.S., Duarte, I.D., Rocha, L.D., Azevedo, V.C., Matsumoto, S.T., Elliott, M., Wunderlin, D.A., Monferrán, M.V., Fernandes, M.N., 2019. Nanoparticle transport and sequestration: intracellular titanium dioxide nanoparticles in a neotropical fish. Sci. Total Environ. 658, 798-808.
dc.relationTaiwo, A.M., 2016. Source apportionment of urban background particulate matter in Birmingham, United Kingdom using a mass closure model. Aerosol and Air Qual. Res. 16(5), 1244–1252. https://doi.org/10.4209/aaqr.2015.09.0537.
dc.relationTao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J., Hsu, S.C., 2014. PM2.5 pollution in a megacity of Southwest China: Source apportionment and implication. Atmos. Chem. Phys. 14(16), 8679–8699. https://doi.org/10.5194/acp14-8679-2014.
dc.relationTasić, M., Mijić, Z., Rajšić, S., Stojić, A., Radenković, M., Joksić, J., 2009. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization. J. Phys.: Conf. Se. 162, 012018. https://doi.org/10.1088/17426596/162/1/012018.
dc.relationTerzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., Samara, C., 2010. Chemical composition and mass closure of ambient PM10 at urban sites. Atmos. Environ. 44(18), 2231–2239. https://doi.org/10.1016/j.atmosenv.2010.02.019.
dc.relationTiwary A., Williams I., 2018. Air Pollution: Measurement, Modelling and Mitigation. CRC Press,696 pp.
dc.relationTsyro, S.G., 2005. To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5? Atmos. Chem. Phys. 5(2), 515–532. https://doi.org/10.5194/acp-5-515-2005.
dc.relationTomasi, C., Fuzzi, S., Kokhanovsky, A., 2017. Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. Remote Sensing of Atmospheric Aerosol, 341-436.
dc.relationUSEPA – United States Environmental Protection Agency, 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide – EPA/600/R-14/108. https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf
dc.relationVallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., Pekkanen, J., 2003. Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmos. Environ. 37(5), 615–623. https://doi.org/10.1016/S1352-2310(02)00925-1.
dc.relationVargas, F.A., Rojas, N.Y., Pachon, J.E., Russell, A.G., 2011. PM10 characterization and source apportionment at two residential areas in Bogota. Atmos. Pollut. Res. 3(1), 72– 80. https://doi.org/10.5094/APR.2012.006.
dc.relationVélez-Pereira, A.M., Vergara-Vasquez, E., 2013. Caracterización de emisiones atmosféricas por fuentes fijas industriales del distrito de Barranquilla, Colombia. In: 4th Colombian Meeting and International Conference on Air Quality and Public Health 1176–1183. https://doi.org/ 10.13140/RG.2.1.1941.1047.
dc.relationVengoechea, A.M., Rojano, R.E., Arregoces, H.A., 2018. Dispersion and Concentration of PM10 Particles in a Caribbean Coastal City. Inf. Tecnol. 29(6), 123–130. https://doi.org/10.4067/s0718-07642018000600123.
dc.relationViana, M., Querol, X., Alastuey, A., Gil, J.I., Menéndez, M., 2006. Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 65(11), 2411–2418. https://doi.org/10.1016/j.chemosphere.2006.04.060.
dc.relationWang, W., Yu, J., Cui, Y., He, J., Xue, P., Cao, W., Ying, H., Gao, W., Yan, Y., Hu, B., Xin, J., Wang, L., Liu, Z., Sun, Y., Dongsheng, J., Wang, Y., 2018. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmos. Res. 203, 105–117. https://doi.org/10.1016/j.atmosres.2017.11.033.
dc.relationWang, Y., Zhuang, G., Sun, Y., An, Z., 2006. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 40(34), 6579–6591. https://doi.org/10.1016/j.atmosenv.2006.05.066.
dc.relationWeichenthal, S., Hatzopoulou, M., Goldberg, M.S., 2014. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part. Fibre. Toxicol. 11, 70.
dc.relationWHO – World Health Organization, 2005. Air quality guidelines - global update 2005. https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/.
dc.relationWHO – World Health Organization, 2018. Ambient (outdoor) air pollution. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-andhealth
dc.relationWu, X., Vu, T.V., Shi, Z., Harrison, R.M., Liu, D., Cen, K., 2018. Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmos. Environ. 189, 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025.
dc.relationXue, F., Kikumoto, H., Li, X., Ooka, R., 2018. Bayesian source term estimation of atmospheric releases in urban areas using LES approach. J. Hazard. Mater. 349, 68–78. https://doi.org/10.1016/j.jhazmat.2018.01.050.
dc.relationYan, S., Subramanian, S.B., Tyagi, R.D., Surampalli, R.Y., Zhang, T.C., 2010. Emerging contaminants of environmental concern: source, transport, fate, and treatment. Pract. Period. Hazard Toxic Radioact. Waste Manag. 14 (1), 2-20.
dc.relationYao, L., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., Sui, X., Yang, F., Lu, Y., Wang, W., 2016. Sources apportionment of PM2.5 in a background site in the North China Plain. Sci. Total Environ. 541, 590–598. https://doi.org/10.1016/j.scitotenv.2015.09.123.
dc.relationZhong, Z., Zheng, J., Zhu, M., Huang, Z., Zhang, Z., Jia, G., Wang, X., Bian, Y., Wang, Y., Li, N., 2018. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Sci. Total Environ. 627, 1080–1092. https://doi.org/10.1016/j.scitotenv.2018.01.268.
dc.relationZhou, W., Wang, Q., Zhao, X., Xu, W., Chen, C., Du, W., Zhao, J., Canonaco, F., Prévôt, A.S.H., Fu, P., Wang, Z., Worsnop, D.R., Sun, Y., 2018. Characterization and source
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceGeoscience Frontiers
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1674987120302553
dc.subjectUrban air pollution
dc.subjectParticulate matter
dc.subjectGeochemical composition
dc.subjectAerosol source apportionment
dc.subjectReceptor models
dc.subjectPMF
dc.titleParticulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución