dc.creator | Cañas Cervantes, Rodolfo | |
dc.creator | Martinez Palacio, Ubaldo | |
dc.date | 2021-01-07T18:35:58Z | |
dc.date | 2021-01-07T18:35:58Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T20:11:52Z | |
dc.date.available | 2023-10-03T20:11:52Z | |
dc.identifier | 2352-9148 | |
dc.identifier | https://hdl.handle.net/11323/7668 | |
dc.identifier | https://doi.org/10.1016/j.imu.2020.100472 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174736 | |
dc.description | Obesity is a worldwide disease that affects people of all ages and gender; in consequence, researchers have made great efforts to identify factors that cause it early. In this study, an intelligent method is created, based on supervised and unsupervised techniques of data mining such as Simple K-Means, Decision Trees (DT), and Support Vector Machines (SVM) to detect obesity levels and help people and health professionals to have a healthier lifestyle against this global epidemic. In this research the primary source of collection was from students 18 and 25 years old at institutions in the countries of Colombia, Mexico, and Peru. The study takes a dataset relating to the main causes of obesity, based on the aim to reference high caloric intake, a decrease of energy expenditure due to the lack of physical activity, alimentary disorders, genetics, socioeconomic factors, and/or anxiety and depression. In the selected dataset, 178 students participated in the study, 81 male and 97 female. Using algorithms including Decision Tree, Support Vector Machine (SVM), and Simple K-Means, the results show a relevant tool to perform a comparative analysis among the mentioned algorithms. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] Guti´errez HM. Diez problemas de la Poblacion ´ de Jalisco: una perspectiva
sociodemografica. ´ In: Edicion ´ Primera, editor. Guadalajara, M´exico. Direccion ´ de
Publicaciones del Gobierno de Jalisco; 2010. | |
dc.relation | [2] OMS. Organizacion ´ mundial de la Salud. 2016. http://www.who.int/mediacent
re/factsheets/fs311/es/. | |
dc.relation | [3] Olmedo, M. V. “La obesidad: un problema de salud pública. 2016 Revista de
divulgacion ´ científica y tecnologica ´ de la Universidad Veracruzana. Reference to a
journal publication with an article number. | |
dc.relation | [4] Hernández GM. Prevalencia de sobrepeso y obesidad, y factores de riesgo, en ninos ˜
de 7-12 anos, ˜ en una escuela pública de Cartagena. Universidad Nacional de
Colombia (Colombia), septiembre - octubre; 2011. | |
dc.relation | [5] Davila-Payan C, DeGuzman M, Johnson K, Serban N, Swann J. Estimating
prevalence of overweight or obese children and adolescents in small geographic
areas using publicly available data. Prev Chronic Dis 2015;12:140229. https://doi.
org/10.5888/pcd12.140229. | |
dc.relation | [6] Manna, S., & Jewkes, A. M. “Understanding early childhood obesity risks: an
empirical study using fuzzy signatures”, In Fuzzy systems (FUZZ-IEEE). 2014 IEEE
international conference on (pp. 1333-1339). IEEE. | |
dc.relation | [7] Adnan MHBM, Husain W. A hybrid approach using Naïve Bayes and Genetic
Algorithm for childhood obesity prediction”. In: Computer & information science
(ICCIS), 2012 international conference on, vol. 1. IEEE; 2012. p. 281–5. | |
dc.relation | [8] Adnan MHM, Husain W. A framework for childhood obesity classifications and
predictions using NBtree”. In: Information technology in asia (CITA 11), 2011 7th
international conference on. IEEE; 2011. p. 1–6. | |
dc.relation | [9] Adnan, M. H. B. M., Husain, W., & Damanhoori, F. “A survey on utilization of data
mining for childhood obesity prediction”, In Information and telecommunication
technologies (APSITT). 2010 8th asia-pacific symposium on (pp. 1-6). IEEE. | |
dc.relation | [10] Dugan TM, Mukhopadhyay S, Carroll A, Downs S. Machine learning techniques for
prediction of early childhood obesity. Appl Clin Inf 2015;6(3):506–20. | |
dc.relation | [11] Zhang ML, Zhou ZH. Multi-instance clustering with applications to multi-instance
prediction. Appl Intell 2009;31(1):47–68. | |
dc.relation | [12] Suguna M. Childhood obesity epidemic analysis using classification algorithms. Int.
J. Mod. Comput. Sci 2016;4(1):22–6. | |
dc.relation | [13] Abdullah FS, Manan NSA, Ahmad A, Wafa SW, Shahril MR, Zulaily N, Ahmed A.
Data mining techniques for classification of childhood obesity among year 6 school
children. In: International conference on soft computing and data mining. Cham:
Springer; 2016. p. 465–74. | |
dc.relation | [14] De-La-Hoz-Correa Eduardo, Mendoza-Palechor Fabio E, De-La-Hoz-Manotas Alexis,
Morales-Ortega Roberto C, Sanchez ´ Hernandez ´ Beatriz Adriana. Obesity level
estimation software based on decision trees. J Comput Sci 2019;15(Issue 1):67–77.
https://doi.org/10.3844/jcssp.2019.67.77. | |
dc.relation | [15] Ward ZJ, Long MW, Resch SC, Gortmaker SL, Cradock AL, Giles C, et al. Redrawing
the US obesity landscape: bias-corrected estimates of state-specific adult obesity
prevalence. PloS One 2016;11(3):e0150735. https://doi.org/10.1371/journal.
pone.0150735. | |
dc.relation | [16] Gomez ´ M, Avila ´ L. La obesidad: un factor de riesgo cardiometabolico. ´ In: Medicina
de Familia, vol. 8; 2008. p. 91–7. Nº. 2. | |
dc.relation | [17] Joachims T. Text categorization with support vector machines. Proceedings of the
European C~njerence on machine learning. Springer-Verlrtg; 1998. | |
dc.relation | [18] Kim Y, Ling H. Human activity classification based on micro-Doppler signatures
using a support vector machine”. IEEE Trans Geosci Rem Sens 2009;47(5):
1328–37. | |
dc.relation | [19] Da Silva F, Niedermeyer E. “Electroencephalography: basic principles. 1993.
Clinical applications, and related fields”, William & Wikins, Baltimore. | |
dc.relation | [20] Parsons TD, Rizzo AA. Affective outcomes of virtual reality exposure therapy for
anxiety and specific phobias: a meta-analysis. J Behav Ther Exp Psychiatr 2008;39
(3):250–61. | |
dc.relation | [21] De la Hoz E, de la Hoz E, Ortiz A, Ortega J, Martínez-Alvarez ´ A. Feature selection
by multi-objective optimisation: application to network anomaly detection by
hierarchical self-organising maps. Knowl-Based Syst 2014;71:322–38. | |
dc.relation | [22] Bekele E, Wade J, Bian D, Fan J, Swanson A, Warren Z, Sarkar N. Multimodal
adaptive social interaction in virtual environment (MASI-VR) for children with
Autism spectrum disorders (ASD). In: 2016 IEEE virtual reality. VR; 2016.
p. 121–30. https://doi.org/10.1109/VR.2016.75046_95. | |
dc.relation | [23] Han J, Kamber M. Data mining: concepts and techniques. second ed. San Francisco:
Morgan Kaufmann Publishers; 2001. | |
dc.relation | [24] Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data
mining, inference and prediction. New York: Springer; 2001. | |
dc.relation | [25] Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Network
2005;16(3):645–78. | |
dc.relation | [26] Zhang ML, Zhou ZH. Multi-instance clustering with applications to multi-instance
prediction. Appl Intell 2009;31(1):47–68. | |
dc.relation | [27] Palechor FM, De la Hoz Manotas A, Colpas PA, Ojeda JS, Ortega RM, Melo MP.
Cardiovascular disease analysis using supervised and unsupervised data mining
techniques. J SW 2017;12(2):81–90. | |
dc.relation | [28] Mendoza-Palechor F, Menezes ML, Sant’Anna A, Ortiz-Barrios M, Samara A,
Galway L. Affective recognition from EEG signals: an integrated data-mining
approach. Journal of Ambient Intelligence and Humanized Computing 2018:1–20. | |
dc.relation | [29] Fabio Mendoza-Palechor, Alexis De la Hoz-Manotas, Roberto Morales-Ortega,
Ubaldo Martinez-Palacio, Jorge Diaz-Martinez, Harold Combita-Nino. Designing A
method for alcohol consumption prediction based on clustering and support vector
machines. Res J Appl Sci Eng Technol 2017;14(4):146–54. | |
dc.relation | [30] Palechor FM, Manotas ADLH, Franco EDLH, Colpas PA. Feature selection, learning
metrics and dimension reduction in training and classification processes in
intrusion detection systems. J Theor Appl Inf Technol 2015;82(2):291. | |
dc.relation | [31] Salley James N, Hoover Adam W, Wilson Michael L, Muth Eric R. Comparison
between human and bite-based methods of estimating caloric intake. J Acad Nutr
Diet 2016;116(Issue 10):1568–77. https://doi.org/10.1016/j.jand.2016.03.007.
ISSN 2212-2672, http://www.sciencedirect.com/science/article/pii/S2212267
216300090. | |
dc.relation | [32] Zhu J, Pande A, Mohapatra P, Han JJ. Using deep learning for energy expenditure
estimation with wearable sensors. In: 2015 17th international conference on Ehealth networking. Boston, MA: Application & Services (HealthCom); 2015.
p. 501–6. https://doi.org/10.1109/HealthCom.2015.7454554. | |
dc.relation | [33] Hall R, Pasipanodya J, Swancutt M, Meek C, Leff R, Gumbo T. Supervised machinelearning reveals that old and obese people achieve low dapsone concentrations.
CPT Pharmacometrics Syst Pharmacol 2017;6:552–9. https://doi.org/10.1002/
psp4.12208. | |
dc.relation | [34] Gerl MJ, et al. Machine learning of human plasma lipidomes for obesity estimation
in a large population cohort. PLoS Biol Oct. 2019;17(10):e3000443. https://doi.
org/10.1371/journal.pbio.3000443 [Online]. Available:. | |
dc.relation | [35] Craig A. Biwer. Computing obesity: signal processing and machine learning applied
to predictive modeling of clinical weight-loss. 2017. https://deepblue.lib.umich.ed
u/bitstream/handle/2027.42/140907/cbiwer_1.pdf?sequence=1&isAllowed=y. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Informatics in Medicine Unlocked | |
dc.source | https://www.sciencedirect.com/science/article/pii/S2352914820306225 | |
dc.subject | Obesity | |
dc.subject | Simple k-means | |
dc.subject | Decision trees | |
dc.subject | Support vector machines | |
dc.title | Estimation of obesity levels based on computational intelligence | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |