dc.relation | Aberg, B. (1992). Void ratio of noncohesive soils and similar materials. Journal of Geotechnical and Geoenvironmental Engineering, 118(9), 1315-1334.
Aberg, B. (1996). Grain-size distribution for smallest possible void ratio. Journal of Geotechnical and Geoenvironmental Engineering, 122(1), 74-77.
Ahmed, A., & Mostefa, B. (2012). Fines content and cyclic preloading effect on liquefaction potential of silty sand: A laboratory study. Polytechnica Hungarica, 9(4), 47-64.
Amini, F., & Qi, G. (2000). Liquefaction Testing of Stratified Silty Sands. Journal of geotechnical and geoenvironmental engineering, 3, 208-217.
Bablu, K., & Maheshwari, B. (2013). Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case, 1-7.
Bandini, P., & Salthiskumar, S. (2009). Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of geotechnical and geoenvironmental engineering, 135, 1976-1980.
Barton, M., Cresswell, A., & Brown, R. (2001). Measuring the effect of mixed grading on the maximum dry density of sands. Geotechnical Testing Journal, 24(1), 121-127.
Braja, M. D. (2013). Fundamentos de ingeniería geotécnica. Mexico: Cengage Learning.
Ching, S., Jia-Yi, W., & Louis, G. (2015). Modeling of minimum void ratio for sand-silt mixtures. Elsevier, 293-304.
Ching, S., Jia-Yi, W., & Louis, G. (2016). Maximum and minimum void ratios for sand-silt mixtures. Elsevier, 7-18.
Ching, S., Yibing, D., & Mehrashk, M. (2018). A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles. Engineering Geology, 237, 21-31.
Cho, G., Dodds, J., & Santamarina, J. (2006). Particle shape effects on packing density,. Journal of Geotechnical and Geoenvironmental Engineering, 132, 591-602.
D4253, A. (2016). Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM international, 1-14.
D4254. (2016). Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM international, 1-9.
Das, C. (2008). Weight-Volume Relationships. CE 240 Soil Mechanics & Foundations.
Lade, P., Liggio, J., & Yamamuro, J. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4), 336-347.
Leoni, A. (2005). Propiedades físicas de los suelos. Argentina.
Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., & Schanz, T. (2014). Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Comptes Rendus Mécanique.
Misko, C., & Kenji, I. (2002). Maximum and minimum void ratio characteristics of sands. Soils and Foundations, 42, 65-78.
Mohamed, B., Hanifi, M., & Karim, B. (2015). Critical undrained shear strength of loosemedium sand-silt mixtures under monotonic loadings. Journal of theoretical and aplied mechanics, 53(2), 331-344.
Patra, C. B., Nagaratnam, S., & Shuvranshu, R. (2010). Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering, 4, 195-203.
Patra, C., Sivakugan, N., & Das, B. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62.
Patra, C., Sivakugan, N., Das, B., & Rout, S. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62.
Pham Huu, G. (2017). Effects of particle characteristics on the shear strength of calcareous sand. Geotechnica Slovenica, 77-89.
Riquelme, J., & Dorador, L. (2014). Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. Chilean Geotechnical Society , 1-11.
Rouse, P., Fannin, R., & Shuttle, D. (2008). Influence of roundness on the void ratio and strength of uniform sand. Géotechnique, 58, 227-231.
Salgado, R., & badini, P. K. (2000). Shear strength and stiffness of silty sand. Geotechnical and Geoenvironmental Engineering, 126(5), 53-64.
Santamarina, J., & Cho, G. (2004). Soil behaviour: the role of particle shape. Jardine.
Shimobe, S., & Moroto, N. (1995). A new classification chart for sand liquefaction. Proc. 1st Int. Conf. on Earthquake Geotechnical Engineering, 315-320.
Simoni, A., & Houlsby, G. (2006). The direct shear strength and dilatancy of sand-gravel mistures. Geotechnical and geological engineering, 24, 523-549.
Takeji, K. (2000). Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and foundations, 40(4), 95-102.
Wichtmann, T. (2005). Explicit accumulation model for non-cohesive soils under cyclic loading. Bochum, 1-288.
Witchmann, T., & Triantafyllidis, T. (2016). An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: test with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739-761.
Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., & Kayabali, K. (2009). A study on the limit void ratio characteristics of medium to fine mixed graded sands. Engineering Geology, 104, 290-294.
Youd, T. (1973). Factors controlling maximum and minimum densities of sands. ASTM International, West Conshohocken, PA, 98-112. | |