dc.creatorAriza Colpas, Paola Patricia
dc.creatorGuerrero-Cuentas, Hilda Rosa
dc.creatorHerrera-Tapias, Belina
dc.creatorOñate-Bowen, Alvaro Agustín
dc.creatorSuarez-Brieva, Eydy del Carmen
dc.creatorPiñeres Melo, Marlon Alberto
dc.creatorButt Shariq, Aziz
dc.creatorCOLLAZOS MORALES, CARLOS ANDRES
dc.creatorRamayo González, Ramón Enrique
dc.creatorMARTÍNEZ PALMERA, OLGA
dc.date2021-09-15T14:44:08Z
dc.date2021-09-15T14:44:08Z
dc.date2021
dc.date.accessioned2023-10-03T20:11:34Z
dc.date.available2023-10-03T20:11:34Z
dc.identifier1877-0509
dc.identifierhttps://hdl.handle.net/11323/8694
dc.identifierhttps://doi.org/10.1016/j.procs.2021.07.072
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174697
dc.descriptionThe low quality and relevance at all educational levels remain a problem present in education in Colombia, limiting the training and development of skills for work and for life. The above is evidenced in the results of the country in standardized tests. Colombia occupies one of the last places the two most recognized international tests (TIMMS and PISA); In fact, it is considered that ―at the international level, one of the benchmarks for measuring scientific competences is the PISA tests, which assess the knowledge, skills, and scientific attitudes of 15-year-old students in different countries. In 2006, PISA tests were applied to young Colombians. While it is true that the test results show the motivation of young Colombians to project in the scientific field (those evaluated had high scores in the subcompetence of identification of scientific phenomena), the country lags in other competences that are more related Direct with innovation processes, such as explaining scientific events and using scientific evidence. This article resulted from the research project: ―Strengthening of citizen and democratic culture in CT + I through the iep supported in ICT in the Department of Magdalena financed by SIGR funds - General System of Royalties.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] Hall, T., & Kamper, H. (2020, January). Towards Improving Human Arithmetic Learning using Machine Learning. In 2020 International SAUPEC/RobMech/PRASA Conference (pp. 1-6). IEEE.
dc.relation[2] Khan, N., Bhanushali, D., Patel, S., & Kotecha, R. (2020). Strengthening e-Education in India using Machine Learning. Available at SSRN 3565255.
dc.relation[3] Abidi, S. M. R., Ni, J., Ge, S., Wang, X., Ding, H., Zhu, W., & Zhang, W. (2020, January). Demystifying help-seeking students interacting multimodal learning environment under machine learning regime. In Eleventh International Conference on Graphics and Image Processing (ICGIP 2019) (Vol. 11373, p. 113732V). International Society for Optics and Photonics.
dc.relation[4] Rajkumar, R., & Ganapathy, V. (2020). Bio-Inspiring Learning Style Chatbot Inventory using Brain Computing Interface to Increase the Efficiency of E-Learning. IEEE Access.
dc.relation[5] Ariza Colpas, P. P., Herrera-Tapias, B., Piñeres-Melo, M., Guerrero-Cuentas, H., Consuegra-Bernal, M., De-la-Hoz Valdiris, E., ... & Morales-Ortega, R. C. (2020). Cyclon language first grade app: technological platform to support the construction of citizen and democratic culture of science, technology and innovation in children and youth groups.
dc.relation[6] Virvou, M., Alepis, E., Tsihrintzis, G. A., & Jain, L. C. (2020). Machine Learning Paradigms. In Machine Learning Paradigms (pp. 1-5). Springer, Cham.
dc.relation[7] Jithendran, A., Karthik, P. P., Santhosh, S., & Naren, J. (2020). Emotion Recognition on E-Learning Community to Improve the Learning Outcomes Using Machine Learning Concepts: A Pilot Study. In Smart Systems and IoT: Innovations in Computing (pp. 521-530). Springer, Singapore.
dc.relation[8] Alenezi, H. S., & Faisal, M. H. (2020). Utilizing crowdsourcing and machine learning in education: Literature review. Education and Information Technologies, 1- 16.
dc.relation[9] Togawa, S., Kondo, A., & Kanenishi, K. (2020, February). Development of Tutoring Assistance Framework Using Machine Learning Technology for Teachers. In International Conference on Intelligent Human Systems Integration (pp. 677-682). Springer, Cham.
dc.relation[10] Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2020). Student Engagement Level in e-learning Environment: Clustering Using K- means. American Journal of Distance Education, 1-20.
dc.relation[11] Chrysafiadi, K., Virvou, M., & Sakkopoulos, E. (2020). Optimizing Programming Language Learning Through Student Modeling in an Adaptive Web-Based Educational Environment. In Machine Learning Paradigms (pp. 205-223). Springer, Cham.
dc.relation[12] Habib, M. K. (2020). Robotics E-Learning Supported by Collaborative and Distributed Intelligent Environments. In Revolutionizing Education in the Age of AI and Machine Learning (pp. 97-113). IGI Global.
dc.relation[13] Troussas, C., & Virvou, M. (2020). Blending Machine Learning with Krashen’s Theory and Felder-Silverman Model for Student Modeling. In Advances in Social Networking-based Learning (pp. 99-119). Springer, Cham.
dc.relation[14] Boussakssou, M., Hssina, B., & Erittali, M. (2020). Towards an Adaptive E-learning System Based on Q-Learning Algorithm. Procedia Computer Science, 170, 1198-1203.
dc.relation[15] Piñeres-Melo, M. A., Ariza-Colpas, P. P., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). SSwWS: Structural Model of Information Architecture. In International Conference on Swarm Intelligence (pp. 400-410). Springer, Cham.
dc.relation[16] Troussas, C., Krouska, A., & Virvou, M. (2020). Using a multi module model for learning analytics to predict learners’ cognitive states and provide tailored learning pathways and assessment. In Machine Learning Paradigms (pp. 9-22). Springer, Cham
dc.relation[17] Lara, J. A., Aljawarneh, S., & Pamplona, S. (2020). Special issue on the current trends in E-learning Assessment. Journal of Computing in Higher Education, 32(1), 1-8.
dc.relation[18] Zagorskis, V., Gorbunovs, A., & Kapenieks, A. (2020). TELECI ARCHITECTURE FOR MACHINE LEARNING ALGORITHMS INTEGRATION IN AN EXISTING LMS. Emerging Extended Reality Technologies for Industry 4.0: Early Experiences with Conception, Design, Implementation, Evaluation and Deployment, 121.
dc.relation[19] Cerezo, R., Bogarín, A., Esteban, M., & Romero, C. (2020). Process mining for self-regulated learning assessment in e-learning. Journal of Computing in Higher Education, 32(1), 74-88
dc.relation[20] Nilashi, M., Ahmadi, N., Samad, S., Shahmoradi, L., Ahmadi, H., Ibrahim, O., ... & Yadegaridehkordi, E. (2020). Disease Diagnosis Using Machine Learning Techniques: A Review and Classification. Journal of Soft Computing and Decision Support Systems, 7(1), 19-30.
dc.relation[21] Alihodzic, A., Tuba, E., & Tuba, M. (2020). An Improved Extreme Learning Machine Tuning by Flower Pollination Algorithm. In Nature- Inspired Computation in Data Mining and Machine Learning (pp. 95-112). Springer, Cham
dc.relation[22] Rajendra, A. B., Rajkumar, N., Bhat, S. N., Suhas, T. R., & Joshi, S. P. N. (2020). E-Learning Web Accessibility Framework for Deaf/Blind Kannada-Speaking Disabled People. In Proceedings of ICRIC 2019 (pp. 595-604). Springer, Cham.
dc.relation[23] Crowder, J. A., Carbone, J., & Friess, S. (2020). Abductive artificial intelligence learning models. In Artificial Psychology (pp. 51-63). Springer, Cham
dc.relation[24] Ofori, F., Maina, E., & Gitonga, R. (2020). Using Machine Learning Algorithms to Predict Students’ Performance and Improve Learning Outcome: A Literature Based Review. Journal of Information and Technology, 4(1), 33-55.
dc.relation[25] Ariza-Colpas, P. P., Piñeres-Melo, M. A., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). WSIA: Web Ontological Search Engine Based on Smart Agents Applied to Scientific Articles. In International Conference on Swarm Intelligence (pp. 338-347). Springer, Cham.
dc.relation[26] Tokunaga, K., Saeki, C., Taniguchi, S., Nakano, S., Ohta, H., & Nakamura, M. (2020). Nondestructive evaluation of fish meat using ultrasound signals and machine learning methods. Aquacultural Engineering, 89, 102052.
dc.relation[27] Hendradi, P., Abd Ghani, M. K., Mahfuzah, S. N., Yudatama, U., Prabowo, N. A., & Widyanto, R. A. (2020). Artificial Intelligence Influence In Education 4.0 To Architecture Cloud Based E-Learning System. International Journal of Artificial Intelligence Research, 4(1).
dc.relation[28]Naidu, V. R., Singh, B., Al Farei, K., & Al Suqri, N. (2020). Machine Learning for Flipped Teaching in Higher Education—A Reflection. In Sustainable Development and Social Responsibility—Volume 2 (pp. 129-132). Springer, Cham.
dc.relation[29] Guo, Y., Yu, H., Chen, D., & Zhao, Y. Y. (2020). Machine learning distilled metabolite biomarkers for early stage renal injury. Metabolomics, 16(1), 4.
dc.relation[30]Troussas, C., & Virvou, M. (2020). Advances in Social Networking-based Learning: Machine Learning-based User Modelling and Sentiment Analysis (Vol. 181). Springer Nature.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceProcedia Computer Science
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1877050921014757
dc.subjectTeaching
dc.subjectNarrative genre
dc.subjectStory
dc.subjectFable
dc.subjectPrimary school
dc.subjectLearning software
dc.titleStrengthening the teaching of the narrative genre: story and fable in primary school children in the Department of Magdalena – Colombia. A commitment to the use of ICT games and bayesian logistic regression
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución