dc.creator | Silva, Jesús | |
dc.creator | Herazo-Beltrán, Yaneth | |
dc.creator | Marín-González, Freddy | |
dc.creator | Varela Izquierdo, Noel | |
dc.creator | Pineda, Omar | |
dc.creator | Palencia-Domínguez, Pablo | |
dc.creator | Vargas Mercado, Carlos | |
dc.date | 2021-01-21T13:39:17Z | |
dc.date | 2021-01-21T13:39:17Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T20:09:21Z | |
dc.date.available | 2023-10-03T20:09:21Z | |
dc.identifier | https://hdl.handle.net/11323/7741 | |
dc.identifier | https://doi.org/10.1007/978-981-15-4875-8_16 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174597 | |
dc.description | The construction of patient classification (or risk adjustment) systems allows comparison of the effectiveness and quality of hospitals and hospital services, providing useful information for management decision making and management of hospitals. Risk adjustment systems to stratify patients’ severity in a clinical outcome are generally constructed from care variables and using statistical techniques based on logistic regression (RL). The objective of this investigation is to compare the hospital mortality prediction capacity of an artificial neural network (RNA) with other methods already known. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | 1.
Sargent, D.J.: Comparison of artificial neural networks with other statistical approaches results from medical data sets. Cancer 91, 1636–1642 (2001) | |
dc.relation | 2.
Bifet, A., De Morales, G. F: Big data stream learning with Samoa. Recuperado de (2014). | |
dc.relation | 3.
Clermont, G., Angus, D.C., DiRusso, S.M., Griffin, M., Linde-Zwirble, W.T.: Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models. Crit. Care Med. 29, 291–296 (2001) | |
dc.relation | 4.
Wong, L.S.S., Young, J.D.: A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural network. Anaesthesia 54, 1048–1054 (1999) | |
dc.relation | 5.
Bravo, M., Alvarado, M.: Similarity measures for substituting web services. Int. J. Web Serv. Res. 7(3), 1–29 (2010) | |
dc.relation | 6.
Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. J. Cental South Univ. 20, 2708–2714 (2013) | |
dc.relation | 7.
Viloria, A., Lezama, O. B. P: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40, pp 1201–1206 (2019) | |
dc.relation | 8.
Viloria, A., Lis-Gutiérrez J. P., Gaitán-Angulo, M., Godoy, A. R. M., Moreno, G. C., Kamatkar, S. J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—Learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham (2018) | |
dc.relation | 9.
Zhu, J., Fang, X. et al.: IBM cloud computing powering a smarter planet. In: Libro Cloud Computing, vol. 599.51, pp 621– 625 (2009) | |
dc.relation | 10.
Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Syst. Appl. 37(7), 5484–5490 (2010) | |
dc.relation | 11.
Thames, L., Schaefer, D.: Software defined cloud manufacturing for industry 4.0. Procedía CIRP 52, 12–17 (2016) | |
dc.relation | 12.
Álvarez, M., Nava, J.M., Rue, M., Quintana, S.: Mortality prediction in head trauma patients: Performance of glasgow coma score and general severity systems. Crit. Care Med. 26, 142–148 (1998) | |
dc.relation | 13.
Setnes, M., Kaymak, U.: Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. IEEE Trans. Fuzzy Syst. 9(1), 153–163 (2001) | |
dc.relation | 14.
Llorca, J., Dierssen, T.: Comparación de dos métodos para el cálculo de la incertidumbre en los análisis de laboratorio. Gac. Sanit. 14, 458–463 (2000) | |
dc.relation | 15.
Viloria, A., Neira-Rodado, D., Pineda Lezama, O. B.: Recovery of scientific data using intelligent distributed data warehouse. ANT/EDI40, pp 1249–1254 (2019) | |
dc.relation | 16.
Wu, Q., Yan, H. S., Yang, H. B.: A forecasting model based support vector machine and particle swarm optimization. In: 2008 Workshop on Power Electronics and Intelligent Transportation System, pp. 218–222 (2008) | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Smart Innovation, Systems and Technologies | |
dc.source | https://link.springer.com/chapter/10.1007/978-981-15-4875-8_16 | |
dc.subject | Hospital mortality | |
dc.subject | Risk stratification | |
dc.subject | Intensive care unit | |
dc.subject | Artificial neural networks | |
dc.subject | Bootstrap | |
dc.title | Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |