dc.contributorSchnorr, Carlos Eduardo
dc.contributorMartinello, Katia
dc.creatorGoethe Flórez, Dilson David
dc.date2021-12-15T19:21:13Z
dc.date2021-12-15T19:21:13Z
dc.date2021
dc.date.accessioned2023-10-03T20:08:45Z
dc.date.available2023-10-03T20:08:45Z
dc.identifierhttps://hdl.handle.net/11323/8961
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174514
dc.descriptionBackground: The metabolic syndrome is a precursor pathophysiological state of cardiovascular diseases or accidents with a high global prevalence. Its etiology is not completely clear, but recent studies have suggested that environmental pollutants may increase the risk of metabolic syndrome. We decided to conduct a systematic review to assess the risk among people with exposure to air pollution and parameters of metabolic syndrome. Methods: Potential studies were identified in the literature from reliable databases such as PubMed and ISI Web of Science until July 2021. The methodological quality of the studies was evaluated according to the New-Castle Ottawa rating, for the meta-analysis it was used a random effects mathematical model in RevMan software (version 5.2). Results: In total, 3479 studies were identified, only 9 studies met the inclusion and exclusion criteria. The studies totaled 16.409.475 participants between men and women with an average age of 52.5 years. The meta-analysis revealed an increased risk of metabolic syndrome, due to exposures to MP2.5 (RR 1.03; CI 1.01-1.05) and MP10 (RR 1.04; CI 1.00-1.09). Regarding NO2 (RR 1.02; CI 0.93 - 1.11) and O3 (RR 1.04; CI 0.96 -1.12), there was no statistically significant association with the metabolic syndrome. Conclusions: The results of this review suggest that adults exposed to long-term air pollutants are at increased risk of MetS, specifically exposure to MP2.5 and MP10.
dc.descriptionAntecedentes: El síndrome metabólico es un estado fisiopatológico precursor de enfermedades o accidentes cardiovasculares con una alta prevalencia global. Su etiología no está completamente clara, pero estudios recientes han sugerido que los contaminantes ambientales pueden aumentar el riesgo de síndrome metabólico. Así que se decidió realizar una revisión sistemática para evaluar el riesgo entre las personas con exposición a la contaminación del aire y parámetros de síndrome metabólico. Se identificaron estudios potenciales en la literatura a partir de bases de datos confiables como PubMed y ISI Web of Science hasta Julio del 2021. Se evaluó la calidad metodológica según la calificación de New-Castle Ottawa, para el metaanálisis se empleó un modelo matemático de efectos aleatorios en el software Rev Man. En total, 3479 estudios fueron identificados, solamente 9 estudios cumplieron los criterios de inclusión y exclusión. Los estudios totalizaron 16.409.475 participantes entre hombresy mujeres con edad promedio de 52.5 años. El metaanálisis reveló incremento del riesgo de síndrome metabólico, por las exposiciones a MP2.5 (RR 1.03; IC 1.01-1.05) y MP10 (RR 1.04; IC1.00-1.09). En lo que refiere a NO2 (RR 1.02; IC 0.93 – 1.11) y O3 (RR 1.04; IC 0.96 -1.12) no evidencio asociación estadísticamente significativa con el síndrome metabólico. Los resultados de esta revisión sugieren que los adultos expuestos a contaminantes del aire a largo plazo presentan un mayor riesgo de MetS, en específicos la exposición a MP2.5 yMP10.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherMaestría de Investigación en Desarrollo Sostenible MIDES
dc.relationAlberti, K. G. M. M., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., Fruchart, J., James, W. P. T., Loria, C. M., & Sidney, C. (2009). The online version of this article, along with updated information and services, is located on the World Wide Web at: https://doi.org/10.1161/CIRCULATIONAHA.109.192644
dc.relationAmerican Association for Cancer Research. (2021). La contaminación del aire puede estar asociada con muchos tipos de cáncer. 35–37.
dc.relationAn, R., Ji, M., Yan, H., & Guan, C. (2018). Impact of ambient air pollution on obesity: A systematic review. International Journal of Obesity, 42(6), 1112–1126. https://doi.org/10.1038/s41366-018-0089-y
dc.relationAnsari-moghaddam, A., Adineh, H. A., Zareban, I., & Farmanfarma, K. H. K. (2019). Prevalence of metabolic syndrome and population attributable risk for cardiovascular, stroke , and coronary heart diseases as well as myocardial infarction and all-cause mortality in middle-east : Systematic review & meta- analysis. 14(March), 1–8. https://doi.org/10.1016/j.obmed.2019.100086
dc.relationArias, M. (2015). Lectura crítica en pequeñas dosis.
dc.relationBalakrishnan, K., Brauer, M., Chen, G., & Chow, J. (2015). To Humans Outdoor Air Pollution. In IARC monographs (Vol. 109).
dc.relationBallestri, S., Zona, S., Targher, G., Romagnoli, D., Baldelli, E., Nascimbeni, F., Roverato, A., Guaraldi, G., & Lonardo, A. (2016). Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. Journal of Gastroenterology and Hepatology (Australia), 31(5), 936–944. https://doi.org/10.1111/jgh.13264
dc.relationBerglund, B., Brunekreef, B., Knöppe, H., Lindvall, T., Maroni, M., Mølhave, L., & Skov, P. (1992). Effects of Indoor Air Pollution on Human Health. Indoor Air, 2(1), 2–25. https://doi.org/10.1111/j.1600-0668.1992.02-21.x
dc.relationBhandari, R., Kelley, G. A., Hartley, T. A., & Rockett, I. R. H. (2014). Metabolic Syndrome Is Associated with Increased Breast Cancer Risk: A Systematic Review with Meta-Analysis. International Journal of Breast Cancer, 2014, 1–13. https://doi.org/10.1155/2014/189384
dc.relationBooth, F. W., Roberts, C. K., & Laye, M. J. (2012). Lack of exercise is a major cause of chronic diseases. Comprehensive Physiology, 2(2), 1143–1211. https://doi.org/10.1002/cphy.c110025
dc.relationBrook, R. D., Sun, Z., Brook, J. R., Zhao, X., Ruan, Y., Yan, J., Mukherjee, B., Rao, X., Duan, F., Sun, L., Liang, R., Lian, H., Zhang, S., Fang, Q., Gu, D., Sun, Q., Fan, Z., & Rajagopalan, S. (2016). Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study. Hypertension, 67(1), 77–85. https://doi.org/10.1161/HYPERTENSIONAHA.115.06237
dc.relationBryce, A., Alegría, E., San Martin-San Martin, M. G., & Alfonso Bryce-Moncloa, C. (2017). Obesidad y riesgo de enfermedad cardiovascular Cardiovascular risk and obesity. Fac Med, 78(2), 202–206. http://dx.doi.org/10.15381/anales.v78i2.13218
dc.relationCai, Y., Zhang, B., Ke, W., Feng, B., Lin, H., Xiao, J., Zeng, W., Li, X., Tao, J., Yang, Z., Ma, W., & Liu, T. (2016). Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension: A Systematic Review and Meta-Analysis. Hypertension, 68(1), 62–70. https://doi.org/10.1161/HYPERTENSIONAHA.116.07218
dc.relationCarll, A. P., Crespo, S. M., Filho, M. S., Zati, D. H., Coull, B. A., Diaz, E. A., Raimundo, R. D., Jaeger, T. N. G., Ricci-vitor, A. L., Papapostolou, V., Lawrence, J. E., Garner, D. M., Perry, B. S., Harkema, J. R., & Godleski, J. J. (2017). Inhaled ambient-level traffic-derived particulates decrease cardiac vagal influence and baroreflexes and increase arrhythmia in a rat model of metabolic syndrome. 1–15. https://doi.org/10.1186/s12989-017-0196-2
dc.relationChassan B, H., Neela, G., Aaron, C., Francine, L., Ole, R., Jonathan M, S., Paolo, V., Francesco, F., Paulo, S., Yirifuji, T., & Dana, L. (2014). Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review. 906(9).
dc.relationChen, J. C., & Schwartz, J. (2008). Metabolic syndrome and inflammatory responses to long-term particulate air pollutants. Environmental Health Perspectives, 116(5), 612– 617. https://doi.org/10.1289/ehp.10565
dc.relationChen, L., Zhou, Y., Li, S., Williams, G., Kan, H., Marks, G. B., Morawska, L., Abramson, M. J., Chen, S., Yao, T., Qin, T., Wu, S., & Guo, Y. (2016). Air pollution and fasting blood glucose: A longitudinal study in China. Science of the Total Environment, 541(2), 750–755. https://doi.org/10.1016/j.scitotenv.2015.09.132
dc.relationChoi, Y. J., Kim, S. H., Kang, S. H., Kim, S. Y., Kim, O. J., Yoon, C. H., Lee, H. Y., Youn, T. J., Chae, I. H., & Kim, C. H. (2019). Short-term effects of air pollution on blood pressure. Scientific Reports, 9(1), 1–8. https://doi.org/10.1038/s41598-019-56413-y Clementi, E. A., Talusan, A., Vaidyanathan, S., Veerappan, A., Mikhail, M., Ostrofsky, D.,
dc.relationCrowley, G., Kim, J. S., Kwon, S., & Nolan, A. (2019). Metabolic syndrome and air pollution: A narrative review of their cardiopulmonary effects. Toxics, 7(1), 1–13https://doi.org/10.3390/toxics7010006
dc.relationClifton, P. (2019). Metabolic syndrome—role of dietary fat type and quantity. Nutrients, 11(7). https://doi.org/10.3390/nu11071438
dc.relationColbeck, I. (1995). Particle Emission from Outdoor and Indoor Sources. Handbook of Environmental Chemistry, 4, 1–33. https://doi.org/10.1007/978-3-540-49145-3-1
dc.relationCurto, A., Ranzani, O., Milà, C., Sanchez, M., Marshall, J. D., Kulkarni, B., Bhogadi, S., Kinra, S., Wellenius, G. A., & Tonne, C. (2019). Lack of association between particulate air pollution and blood glucose levels and diabetic status in peri-urban India. Environment International, 131(February), 105033. https://doi.org/10.1016/j.envint.2019.105033
dc.relationD. Koman, P., & Peter, M. (2017). Ozone Exposure, Cardiopulmonary Health, and Obesity: A Substantive Review. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1021/acs.chemrestox.7b00077.Ozone
dc.relationda Silva, A. A., do Carmo, J. M., Li, X., Wang, Z., Mouton, A. J., & Hall, J. E. (2020). Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. The Canadian Journal of Cardiology, 36(5), 671–682. https://doi.org/10.1016/j.cjca.2020.02.066
dc.relationDabass, A., Talbott, E. O., Rager, J. R., Marsh, G. M., Venkat, A., Holguin, F., & Sharma, R. K. (2018a). Systemic in fl ammatory markers associated with cardiovascular disease and acute and chronic exposure to fi ne particulate matter air pollution (MP 2. 5) among US NHANES adults with metabolic syndrome. Environmental Research, 161(July 2017), 485–491. https://doi.org/10.1016/j.envres.2017.11.042
dc.relationDabass, A., Talbott, E. O., Rager, J. R., Marsh, G. M., Venkat, A., Holguin, F., & Sharma, R. K. (2018b). Systemic inflammatory markers associated with cardiovascular disease and acute and chronic exposure to fine particulate matter air pollution (MP2.5) among US NHANES adults with metabolic syndrome. Environmental Research, 161(October 2017), 485–491. https://doi.org/10.1016/j.envres.2017.11.042
dc.relationDepartamento Nacional de Planeación. (2017). Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones. 1–6. https://www.dnp.gov.co/Paginas/Los-costos-en-la-salud-asociados-a-la-degradaciónambiental-en-Colombia-ascienden-a-$20,7-billones-.aspx
dc.relationDespre, J., Lemieux, I., Bergeron, J., Pibarot, P., Mathieu, P., Larose, E., Bertrand, O. F., & Poirier, P. (2008). Abdominal Obesity and the Metabolic Syndrome: Contribution to Global Cardiometabolic Risk. 1039–1049. https://doi.org/10.1161/ATVBAHA.107.159228
dc.relationDíaz, V. (2009). Metodología de la investigación científica y bioestadística. 2021.
dc.relationDominici, F., Greenstone, M., & Sunstein, C. R. (2014). Particulate matter matters. In Science (Vol. 344, Issue 6181). https://doi.org/10.1126/science.1247348
dc.relationDommermuth, R., & Ewing, K. (2018). Metabolic Syndrome: Systems Thinking in Heart Disease. Primary Care - Clinics in Office Practice, 45(1), 109–129. https://doi.org/10.1016/j.pop.2017.10.003
dc.relationDong, G. H., Qian, Z. M., Xaverius, P. K., Trevathan, E., Maalouf, S., Parker, J., Yang, L., Liu, M. M., Wang, D., Ren, W. H., Ma, W., Wang, J., Zelicoff, A., Fu, Q., & Simckes, M. (2013). Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension, 61(3), 578–584. https://doi.org/10.1161/HYPERTENSIONAHA.111.00003
dc.relationEdginton, S., Sullivan, D. E. O., King, W., & Lougheed, M. D. (2019). Effect of outdoor particulate air pollution on FEV 1 in healthy adults: a systematic review and meta analysis. 583–591. https://doi.org/10.1136/oemed-2018-105420
dc.relationEze, I. C., Schaffner, E., Foraster, M., Imboden, M., von Eckardstein, A., Gerbase, M. W., Rothe, T., Rochat, T., Künzli, N., Schindler, C., & Probst-Hensch, N. (2015). LongTerm Exposure to Ambient Air Pollution and Metabolic Syndrome in Adults. PLOS ONE, 10(6), e0130337. https://doi.org/10.1371/journal.pone.0130337
dc.relationFajardo-Gutiérrez, A. (2017). Medición en epidemiología: prevalencia, incidencia, riesgo, medidas de impacto. Revista Alergia México, 64(1), 109. https://doi.org/10.29262/ram.v64i1.252
dc.relationFalcon-Rodriguez, C. I., Osornio-Vargas, A. R., Sada-Ovalle, I., & Segura-Medina, P. (2016a). Aeroparticles, composition, and lung diseases. Frontiers in Immunology, 7(JAN). https://doi.org/10.3389/fimmu.2016.00003
dc.relationFalcon-Rodriguez, C. I., Osornio-Vargas, A. R., Sada-Ovalle, I., & Segura-Medina, P. (2016b). Aeroparticles, composition, and lung diseases. Frontiers in Immunology, 7(JAN). https://doi.org/10.3389/fimmu.2016.00003
dc.relationFernandez Chinguel, J. E., Zafra Tanaka, J. H., Goicochea Lugo, S., Peralta, C. I., & Taype Rondan, A. (2019). Aspectos básicos sobre la lectura de revisiones sistemáticas y la interpretación de meta-análisis. Acta Medica Peruana, 36(2), 157–169. https://doi.org/10.35663/amp.2019.362.818
dc.relationFerreira, I., Urrutia, G., & Coello, P. A. (2019). Revisiones sistemáticas y metaanálisis: Bases conceptuales e interpretación. Revista Española de Cardiología, 64(8), 688–696. https://doi.org/10.1016/j.recesp.2011.03.029
dc.relationGaio, V., Roquette, R., Dias, C. M., & Nunes, B. (2019). Ambient air pollution and lipid profile: Systematic review and meta-analysis. Environmental Pollution, 254. https://doi.org/10.1016/j.envpol.2019.113036
dc.relationGhafuri, S., Ghaderi, E., Fahami, Y., & Rajabnia, M. (2019). Diabetes & Metabolic Syndrome : Clinical Research & Reviews Epidemiologic study of type 2 diabetes mellitus and metabolic syndrome in rural population of kurdistan province , Iran , in 2011 e 2017. 13. https://doi.org/10.1016/j.dsx.2019.03.037
dc.relationGlass, G. V. (1976). Primary, Secondary, and Meta-Analysis of Research’. 5(10), 3–8. Han, T. S., & Lean, M. E. J. (2006). Metabolic syndrome. Medicine, 34(12), 536–542. https://doi.org/10.1053/j.mpmed.2006.09.012
dc.relationHanson, R. L., Imperatore, G., Bennett, P. H., & Knowler, W. C. (2002). Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes, 51(10), 3120– 3127. https://doi.org/10.2337/diabetes.51.10.3120
dc.relationHayes, R. B., Lim, C., Zhang, Y., Cromar, K., Shao, Y., Reynolds, H. R., Silverman, D. T., Jones, R. R., Park, Y., Jerrett, M., Ahn, J., & Thurston, G. D. (2020). MP2.5 air pollution and cause-specific cardiovascular disease mortality. International Journal of Epidemiology, 49(1), 25–35. https://doi.org/10.1093/ije/dyz114
dc.relationHiggins, J., & Green, S. (2011). Manual Cochrane de revisiones sistemáticas de intervenciones (Julian PT Higgins y Sally Green (ed.)).
dc.relationHolme, J. A., Brinchmann, B. C., Refsnes, M., Låg, M., & Øvrevik, J. (2019). Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. 1–18.
dc.relationHotamisligil, G. S. (2006). https://doi.org/10.1038/nature05485. Nature, 444(7121), 860– 867. https://doi.org/10.1038/nature05485
dc.relationHou, J., Liu, X., Tu, R., Dong, X., Zhai, Z., Mao, Z., Huo, W., Chen, G., Xiang, H., Guo, Y., Li, S., & Wang, C. (2020). Long-term exposure to ambient air pollution attenuated the association of physical activity with metabolic syndrome in rural Chinese adults: A cross-sectional study. Environment International, 136(August 2019), 105459. https://doi.org/10.1016/j.envint.2020.105459
dc.relationHuang, M., Chen, J., Yang, Y., Yuan, H., Huang, Z., & Lu, Y. (2021). Effects of ambient air pollution on blood pressure among children and adolescents: A systematic review and meta-analysis. Journal of the American Heart Association, 10(10). https://doi.org/10.1161/JAHA.120.017734
dc.relationHuang, S., Zhang, X., Huang, J., Lu, X., Liu, F., & Gu, D. (2020). Ambient air pollution and body weight status in adults: A systematic review and meta-analysis. Environmental Pollution, 265, 114999. https://doi.org/10.1016/j.envpol.2020.114999
dc.relationHutcheson, R., & Rocic, P. (2012). The Metabolic Syndrome, Oxidative Stress, Environment, and Cardiovascular Disease : The Great Exploration. 2012. https://doi.org/10.1155/2012/271028
dc.relationHwang, S. E., Kwon, H., Jeong, S. M., Kim, H. J., & Park, J. H. (2019). Ambient air pollution exposure and obesity-related traits in Korean adults. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 1365–1377. https://doi.org/10.2147/DMSO.S208115
dc.relationImpellizzeri, F. M., & Mario Bizzini, P. (2012). SYSTEMATIC REVIEW AND METAANALYSIS: A PRIMER. Urology, 135(C), 152. https://doi.org/10.1016/j.urology.2019.09.037
dc.relationInstituto Nacional de Salud. (2018). Carga de enfermedad ambiental en Colombia. Informe Técnico Especial 10, 177. https://www.ins.gov.co/Direcciones/ONS/Informes/10 Carga de enfermedad ambiental en Colombia.pdf
dc.relationInternational Diabetes Federation. (n.d.). The metabolic Syndrome.
dc.relationInternational Diabetes Federation. (2019). IDF Diabetes Atlas, 9th edn. Brussels, Belgium. In Atlas de la Diabetes de la FID. http://www.idf.org/sites/default/files/Atlas-poster2014_ES.pdf
dc.relationJaganathan, S., Jaacks, L. M., Magsumbol, M., Walia, G. K., Sieber, N. L., Shivasankar, R., Dhillon, P. K., Hameed, S. S., Schwartz, J., & Prabhakaran, D. (2019). Association of long-term exposure to fine particulate matter and cardio-metabolic diseases in lowand middle-income countries: A systematic review. International Journal of Environmental Research and Public Health, 16(14), 1–18. https://doi.org/10.3390/ijerph16142541
dc.relationKamioka, H. (2019). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Japanese Pharmacology and Therapeutics, 47(8), 1177–1185.
dc.relationKim, S. Y., Kim, J. K., Park, S. H., Kim, B. G., Jang, A. S., Oh, S. H., Lee, J. H., Suh, M. W., & Park, M. K. (2018). Effects of inhaled particulate matter on the central nervous system in mice. NeuroToxicology, 67, 169–177. https://doi.org/10.1016/j.neuro.2018.06.001
dc.relationKitchenham, B. (2004). Procedures for Performing Systematic Reviews.
dc.relationLanktree, M. B., & Hegele, R. A. (2017). Metabolic Syndrome. In Genomic and Precision Medicine: Primary Care: Third Edition. Elsevier Inc. https://doi.org/10.1016/B978-0- 12-800685-6.00015-1
dc.relationLee, S., Park, H., Kim, S., Lee, E. K., Lee, J., Hong, Y. S., & Ha, E. (2019a). Fine particulate matter and incidence of metabolic syndrome in non-CVD patients: A nationwide population-based cohort study. International Journal of Hygiene and Environmental Health, 222(3), 533–540. https://doi.org/10.1016/j.ijheh.2019.01.010
dc.relationLee, S., Park, H., Kim, S., Lee, E. K., Lee, J., Hong, Y. S., & Ha, E. (2019b). Fine particulate matter and incidence of metabolic syndrome in non-CVD patients: A nationwide population-based cohort study. International Journal of Hygiene and Environmental Health, 222(3), 533–540. https://doi.org/10.1016/j.ijheh.2019.01.010
dc.relationLitvinova, L., Atochin, D. N., Fattakhov, N., Vasilenko, M., Zatolokin, P., & Kirienkova, E. (2015). Nitric oxide and mitochondria in metabolic syndrome. Frontiers in Physiology, 6(FEB), 1–10. https://doi.org/10.3389/fphys.2015.00020
dc.relationLo, C. K., Mertz, D., & Loeb, M. (2014). Newcastle-Ottawa Scale: comparing reviewers ’ to authors ’ assessments. BMC Medical Research Methodology, 14(1), 1–5. https://doi.org/10.1186/1471-2288-14-45
dc.relationLu, S., Hao, X., Liu, D., Wang, Q., Zhang, W., Liu, P., Zhang, R., Yu, S., Pan, R., Wu, M., Yonemochi, S., & Wang, Q. (2015). Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2015.09.020
dc.relationM., I. (2016). Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia. Saudi Medical Journal, 37(1), 12–20. https://doi.org/10.15537/smj.2016.1.12675
dc.relationMa, R., Zhang, Y., Sun, Z., Xu, D., & Li, T. (2020). Effects of ambient particulate matter on fasting blood glucose: A systematic review and meta-analysis. Environmental Pollution, 258, 113589. https://doi.org/10.1016/j.envpol.2019.113589
dc.relationManisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. In Frontiers in Public Health (Vol. 8). https://doi.org/10.3389/fpubh.2020.00014
dc.relationManterola, C., & Otzen, T. (2015). Valoración Clínica del Riesgo, Interpretación y Utilidad Práctica Clinical Risk Assessment, Interpretation and Practical Utility. Int. J. Morphol, 33(3), 842–849. https://scielo.conicyt.cl/pdf/ijmorphol/v33n3/art06.pdf
dc.relationMartínez-González, M. Á., Alonso, Á., & Fidalgo, J. L. (2008). What is hazard ratio? Concepts in survival analysis. Medicina Clinica, 131(2), 65–72. https://doi.org/10.1157/13123495
dc.relationMatthiessen, C., Lucht, S., Hennig, F., Ohlwein, S., & Jakobs, H. (2018). Long-term exposure to airborne particulate matter and NO 2 and prevalent and incident metabolic syndrome – Results from the Heinz Nixdorf Recall Study. 116(2), 74–82. https://doi.org/10.1016/j.envint.2018.02.035
dc.relationMatthiessen, C., Lucht, S., Hennig, F., Ohlwein, S., Jakobs, H., Jöckel, K. H., Moebus, S., & Hoffmann, B. (2018). Long-term exposure to airborne particulate matter and NO2 and prevalent and incident metabolic syndrome – Results from the Heinz Nixdorf Recall Study. Environment International, 116(2), 74–82. https://doi.org/10.1016/j.envint.2018.02.035
dc.relationMauro, R. Di, Cantarella, G., Bernardini, R., Rosa, M. Di, Barbagallo, I., Distefano, A., Longhitano, L., Vicario, N., Nicolosi, D., Lazzarino, G., Tibullo, D., Gulino, M. E., Spampinato, M., Avola, R., & Volti, G. L. (2019). The biochemical and pharmacological properties of ozone: The smell of protection in acute and chronic diseases. International Journal of Molecular Sciences, 20(3). https://doi.org/10.3390/ijms20030634
dc.relationMerletti, F., Solkolne, C., & Vineis, P. (2011). Epidemiología y Estadística. Enciclopedia de Salud y Seguridad En El Trabajo, 20.1-20.40.
dc.relationMirón, J., & Alonso, M. (2008). Medidas de frecuencia, asociacion e impacto en investigacion aplicada. Medicina y Seguridad Del Trabajo, 211, 93–102. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465-546X2008000200011
dc.relationMoher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., & Petticrew, M. (2016). Revista Española de Nutrición Humana y Dietética d. December. https://doi.org/10.1186/2046-4053-4-1
dc.relationMoreno-Ríos, A. L., Tejeda-Benítez, L. P., & Bustillo-Lecompte, C. F. (2021). Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geoscience Frontiers, 101147. https://doi.org/10.1016/j.gsf.2021.101147
dc.relationMorgan, R. L., Whaley, P., Thayer, K. A., & Schünemann, H. J. (2018). Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environment International. https://doi.org/10.1016/j.envint.2018.07.015
dc.relationMottillo, S., Bs, C., Filion, K. B., Genest, J., Joseph, L., Pilote, L., Poirier, P., Rinfret, S., Ms, C., Schiffrin, E. L., & Eisenberg, M. J. (2010). The Metabolic Syndrome and Cardiovascular Risk A Systematic Review and Meta-Analysis. JAC, 56(14), 1113– 1132. https://doi.org/10.1016/j.jacc.2010.05.034
dc.relationMyte, R., Gylling, B., Häggström, J., Häggström, C., Zingmark, C., Löfgren Burström, A., Palmqvist, R., & Van Guelpen, B. (2019). Metabolic factors and the risk of colorectal cancer by KRAS and BRAF mutation status. International Journal of Cancer, 145(2), 327–337. https://doi.org/10.1002/ijc.32104
dc.relationNegida, A. (2017). Chapter (14 ) Introduction to Systematic Review and Meta-analysis. August.
dc.relationNeira, M., & Prüss-Ustün, A. (2016). Preventing disease through healthy environments: A global assessment of the environmental burden of disease. Toxicology Letters, 259, S1. https://doi.org/10.1016/j.toxlet.2016.07.028
dc.relationNing, J., Zhang, Y., Hu, H., Hu, W., Li, L., Pang, Y., Ma, S., Niu, Y., & Zhang, R. (2021). Association between ambient particulate matter exposure and metabolic syndrome risk: A systematic review and meta-analysis. Science of the Total Environment, 782, 146855. https://doi.org/10.1016/j.scitotenv.2021.146855
dc.relationOhlwein, S., Kappeler, R., Kutlar Joss, M., Künzli, N., & Hoffmann, B. (2019). Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. International Journal of Public Health, 64(4), 547–559. https://doi.org/10.1007/s00038-019-01202-7
dc.relationOrganizacion Panamericana de Salud. (2021). Evaluación de riesgo. 1–4. https://www.paho.org/hq/index.php?option=com_content&view=article&id=5720:201 1-risk-assessment-dva&Itemid=4113&lang=es
dc.relationPalacios, E. K. M. (2019). La contaminación del aire, un problema de todos. 67(2), 189– 191.
dc.relationPark, S. K., Auchincloss, A. H., O’Neill, M. S., Prineas, R., Correa, J. C., Keeler, J., Graham Barr, R., Kaufman, J. D., & Diez Roux, A. V. (2010). Particulate air pollution, metabolic syndrome, and heart rate variability: The multi-ethnic study of atherosclerosis (MESA). Environmental Health Perspectives, 118(10), 1406–1411. https://doi.org/10.1289/ehp.0901778
dc.relationPeralta, C. I., & Taype-rondan, A. (2019). Aspectos básicos sobre la lectura de revisiones sistemáticas y la interpretación de metaanálisis. Acta Médica Peruana, 36(2), 157– 169.
dc.relationPérez-Torres, I., Manzano-Pech, L., Rubio-Ruíz, M. E., Soto, M. E., & Guarner-Lans, V. (2020). Nitrosative stress and its association with cardiometabolic disorders. Molecules, 25(11). https://doi.org/10.3390/molecules25112555
dc.relationPiecha, R., Svačina, Š., Malý, M., Vrbík, K., Lacinová, Z., Haluzík, M., Pavloušková, J.,Vavrouš, A., Matějková, D., Müllerová, D., Mráz, M., & Matoulek, M. (2016). Urine levels of phthalate metabolites and bisphenol a in relation to main metabolic syndrome components: Dyslipidemia, hypertension and type 2 diabetes a pilot study. Central European Journal of Public Health, 24(4), 297–301. https://doi.org/10.21101/cejph.a4704
dc.relationPreker, A. S., Adeyi, O. O., Lapetra, M. G., Simon, D. C., & Keuffel, E. (2016). Health Care Expenditures Associated With Pollution: Exploratory Methods and Findings. Annals of Global Health, 82(5), 711–721. https://doi.org/10.1016/j.aogh.2016.12.003
dc.relationPROSPERO. (2011). International prospective register of systematic reviews Registering a review on PROSPERO What does registration on PROSPERO involve? Inclusion criteria When to register your review PROSPERO International prospective register of systematic reviews Regist. 1–12.
dc.relationRaaschou-Nielsen, O., Beelen, R., Wang, M., Hoek, G., Andersen, Z. J., Hoffmann, B., Stafoggia, M., Samoli, E., Weinmayr, G., Dimakopoulou, K., Nieuwenhuijsen, M., Xun, W. W., Fischer, P., Eriksen, K. T., Sørensen, M., Tjønneland, A., Ricceri, F., de Hoogh, K., Key, T., … Vineis, P. (2016). Particulate matter air pollution components and risk for lung cancer. Environment International, 87(July 2015), 66–73. https://doi.org/10.1016/j.envint.2015.11.007
dc.relationRajkumar, S., Young, B. N., Clark, M. L., Benka-Coker, M. L., Bachand, A. M., Brook, R. D., Nelson, T. L., Volckens, J., Reynolds, S. J., L’Orange, C., Good, N., Koehler, K., Africano, S., Osorto Pinel, A. B., & Peel, J. L. (2019). Household air pollution from biomass-burning cookstoves and metabolic syndrome, blood lipid concentrations, and waist circumference in Honduran women: A cross-sectional study. Environmental Research, 170(October 2018), 46–55. https://doi.org/10.1016/j.envres.2018.12.010
dc.relationRaviv, N. V., Sakhuja, S., Schlachter, M., & Akinyemiju, T. (2017). Metabolic syndrome and in-hospital outcomes among pancreatic cancer patients. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 11, S643–S650. https://doi.org/10.1016/j.dsx.2017.04.019
dc.relationRegufe, V. M. G., Pinto, C. M. C. B., & Perez, P. M. V. H. C. (2020). Metabolic syndrome in type 2 diabetic patients: a review of current evidence. Porto Biomedical Journal, 5(6), e101. https://doi.org/10.1097/j.pbj.0000000000000101
dc.relationSackett, D. L. (1996). On some clinically useful measures of the effects of treatment. Evidence-Based Nursing, 4(2), 36–39. https://doi.org/10.1136/ebn.4.2.36
dc.relationSanidas, E., Papadopoulos, D. P., Grassos, H., Velliou, M., Tsioufis, K., Barbetseas, J., & Papademetriou, V. (2017). Air pollution and arterial hypertension. A new risk factor is in the air. Journal of the American Society of Hypertension, 11(11), 709–715. https://doi.org/10.1016/j.jash.2017.09.008
dc.relationSaxena, P., & Sonwani, S. (2019). Criteria Air Pollutants and their Impact on Environmental Health. In Criteria Air Pollutants and their Impact on Environmental Health. https://doi.org/10.1007/978-981-13-9992-3
dc.relationSchultz, W. M., Sperling, L., Esmaeeli, A., Mahlof, E. N., Varghese, T., Sandesara, P. B., Dhindsa, D. S., Ricketts, J. C., Kelli, H. M., Heinl, R. E., Allard-Ratick, M. P., Millard, A. J., & Eapen, D. J. (2016). Comprehensive Cardiovascular Risk Reduction and Cardiac Rehabilitation in Diabetes and the Metabolic Syndrome. Canadian Journal of Cardiology, 32(10), S349–S357. https://doi.org/10.1016/j.cjca.2016.07.507
dc.relationShah, A. S. V., Lee, K. K., McAllister, D. A., Hunter, A., Nair, H., Whiteley, W., Langrish, J. P., Newby, D. E., & Mills, N. L. (2015). Short term exposure to air pollution and stroke: Systematic review and meta-analysis. In BMJ (Online) (Vol. 350).https://doi.org/10.1136/BMJ.h1295
dc.relationShamy, M., Alghamdi, M., Khoder, M., Mohorjy, A., Alkhatim, A., Alkhalaf, A., Brocato, J., Chen, L., Thurston, G., Lim, C., & Costa, M. (2017). Association between Exposure to Ambient Air Particulates and Metabolic Syndrome Components in a Saudi Arabian Population. International Journal of Environmental Research and Public Health, 15(1), 27. https://doi.org/10.3390/ijerph15010027
dc.relationShim, Y. H., Ock, J. W., Kim, Y. J., Kim, Y., Kim, S. Y., & Kang, D. (2019). Association between Heavy Metals, Bisphenol A, volatile organic compounds and phthalates and metabolic syndrome. International Journal of Environmental Research and Public Health, 16(4). https://doi.org/10.3390/ijerph16040671
dc.relationTocabens, B. E. (2011). Definiciones acerca del riesgo y sus implicaciones. Revista Cubana de Higiene y Epidemiologia, 49(3), 470–481.
dc.relationTsai, D. H., Amyai, N., Marques-Vidal, P., Wang, J. L., Riediker, M., Mooser, V., Paccaud, F., Waeber, G., Vollenweider, P., & Bochud, M. (2012). Effects of particulate matter on inflammatory markers in the general adult population. Particle and Fibre Toxicology, 9, 1–9. https://doi.org/10.1186/1743-8977-9-24
dc.relationTuomisto, J. (2019). Dioxins and dioxin-like compounds: toxicity in humans and animals, sources, and behaviour in the environment. WikiJournal of Medicine, 6(1), 8. https://doi.org/10.15347/wjm/2019.008
dc.relationVallero, D. (2014). The Science of Air Pollution. In Fundamentals of Air Pollution. https://doi.org/10.1016/b978-0-12-401733-7.00003-7
dc.relationVoss, S., Schneider, A., Huth, C., Wolf, K., Markevych, I., Schwettmann, L., Rathmann, W., Peters, A., & Breitner, S. (2021). ENVINT-D-20-01309: Long-term exposure to air pollution, road traffic noise, residential greenness, and prevalent and incident metabolic syndrome: Results from the population-based KORA F4/FF4 cohort in Augsburg, Germany. Environment International, 147(November 2020), 106364. https://doi.org/10.1016/j.envint.2020.106364
dc.relationWallwork, R. S., Colicino, E., Zhong, J., Kloog, I., Coull, B. A., Vokonas, P., Schwartz, J. D., & Baccarelli, A. A. (2017). Ambient fine particulate matter, outdoor temperature, and risk of met. American Journal of Epidemiology, 185(1), 30–39. https://doi.org/10.1093/aje/kww157
dc.relationWang, L., Liu, C., Meng, X., Niu, Y., Lin, Z., Liu, Y., Liu, J., Qi, J., You, J., Tse, L. A., Chen, J., Zhou, M., Chen, R., Yin, P., & Kan, H. (2018). Associations between shortterm exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese cities. Environment International, 117(January), 33–39. https://doi.org/10.1016/j.envint.2018.04.019
dc.relationWei, Y., Zhang, J., Li, Z., Gow, A., Chung, K. F., Hu, M., Sun, Z., Zeng, L., Zhu, T., Jia, G., Li, X., Duarte, M., & Tang, X. (2016). Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: Findings from a natural experiment in Beijing. FASEB Journal, 30(6), 2115–2122. https://doi.org/10.1096/fj.201500142
dc.relationWennberg, M., Gustafsson, P. E., Wennberg, P., & Hammarström, A. (2016). Irregular eating of meals in adolescence and the metabolic syndrome in adulthood: Results from a 27-year prospective cohort. Public Health Nutrition, 19(4), 667–673. https://doi.org/10.1017/S1368980015001445
dc.relationWHO. (2014). Burden of disease from household air pollution for 2012. Summary of results. World Health Organization, 35(February), 2012–2014. http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf
dc.relationWong, E. M., Walby, W. F., Wilson, D. W., Tablin, F., & Schelegle, E. S. (2018). Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease. Toxicological Sciences, 163(1), 140–151. https://doi.org/10.1093/toxsci/kfy018
dc.relationWu, L., Jin, L., Shi, T., Zhang, B., Zhou, Y., Zhou, T., Bao, W., Xiang, H., Zuo, Y., Li, G., Wang, C., Duan, Y., Peng, Z., Huang, X., Zhang, H., Xu, T., Li, Y., Pan, X., Xia, Y., … Liu, Y. (2017). Association between ambient particulate matter exposure and semen quality in Wuhan, China. Environment International, 98, 219–228. https://doi.org/10.1016/j.envint.2016.11.013
dc.relationXie, Xiaoxu, Wang, Y., Yang, Y., Xu, J., Zhang, Y., Tang, W., Guo, T., Wang, Q., Shen, H., Zhang, Y., Yan, D., Peng, Z., Chen, Y., He, Y., & Ma, X. (2018). Long-term exposure to fine particulate matter and tachycardia and heart rate: Results from 10 million reproductive-age adults in China. Environmental Pollution, 242, 1371–1378. https://doi.org/10.1016/j.envpol.2018.08.022
dc.relationXie, Xiaoyun, Li, W., Zhang, Y., Kan, H., & Ying, Z. (2019). Metabolomics analysis of a mouse model for chronic exposure to. 247. https://doi.org/10.1016/j.envpol.2019.01.118
dc.relationYang, B., Min, Z., Li, S., Fan, S., Chen, G., Syberg, K. M., Xian, H., Wang, S., Ma, H., Chen, D., & Yang, M. (2018). Long-term exposure to ambient air pollution ( including MP 1 ) and metabolic syndrome : The 33 Communities Chinese Health Study ( 33CCHS ). Environmental Research, 164(February), 204–211. https://doi.org/10.1016/j.envres.2018.02.029
dc.relationYang, B. Y., Fan, S., Thiering, E., Seissler, J., Nowak, D., Dong, G. H., & Heinrich, J. (2020a). Ambient air pollution and diabetes: A systematic review and meta-analysis. Environmental Research, 180(October 2019), 108817. https://doi.org/10.1016/j.envres.2019.108817
dc.relationYang, B. Y., Fan, S., Thiering, E., Seissler, J., Nowak, D., Dong, G. H., & Heinrich, J. (2020b). Ambient air pollution and diabetes: A systematic review and meta-analysis. Environmental Research, 180(June 2019), 108817. https://doi.org/10.1016/j.envres.2019.108817
dc.relationYang, B. Y., Qian, Z. (Min), Li, S., Fan, S., Chen, G., Syberg, K. M., Xian, H., Wang, S. Q., Ma, H., Chen, D. H., Yang, M., Liu, K. K., Zeng, X. W., Hu, L. W., Guo, Y., & Dong, G. H. (2018). Long-term exposure to ambient air pollution (including MP 1 ) and metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS). Environmental Research, 164(February), 204–211. https://doi.org/10.1016/j.envres.2018.02.029
dc.relationYang, B. Y., Qian, Z., Howard, S. W., Vaughn, M. G., Fan, S. J., Liu, K. K., & Dong, G. H. (2018). Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environmental Pollution, 235, 576–588. https://doi.org/10.1016/j.envpol.2018.01.001
dc.relationYe, D., Klein, M., Chang, H. H., Sarnat, J. A., Mulholland, J. A., Edgerton, E. S., Winquist, A., Tolbert, P. E., & Sarnat, S. E. (2017). Estimating Acute Cardiorespiratory Effects of Ambient Volatile Organic Compounds. In Epidemiology (Vol. 28, Issue 2, pp. 197– 206). https://doi.org/10.1097/EDE.0000000000000607
dc.relationYin, P., Guo, J., Wang, L., Fan, W., Lu, F., Guo, M., Moreno, S. B. R., Wang, Y., Wang, H., Zhou, M., & Dong, Z. (2020). Higher Risk of Cardiovascular Disease Associated with Smaller Size-Fractioned Particulate Matter. Environmental Science and Technology Letters, 7(2), 95–101. https://doi.org/10.1021/acs.estlett.9b00735
dc.relationYoo, S., Oh, S., Park, J., Cho, S. Y., Cho, M. C., Son, H., & Jeong, H. (2019). Effects of metabolic syndrome on the prevalence of prostate cancer: historical cohort study using the national health insurance service database. Journal of Cancer Research and Clinical Oncology, 145(3), 775–780. https://doi.org/10.1007/s00432-019-02842-1
dc.relationYu, Y., Paul, K., Arah, O. A., Mayeda, E. R., Wu, J., Lee, E., Shih, I. F., Su, J., Jerrett, M., Haan, M., & Ritz, B. (2020). Air pollution, noise exposure, and metabolic syndrome – A cohort study in elderly Mexican-Americans in Sacramento area. Environment International, 134(October 2019). https://doi.org/10.1016/j.envint.2019.105269
dc.relationYuan, S., Wang, J., Jiang, Q., He, Z., Huang, Y., Li, Z., Cai, L., & Cao, S. (2019a). Longterm exposure to MP 2. 5 and stroke : A systematic review and meta- analysis of cohort studies. Environmental Research, 177(13), 108587. https://doi.org/10.1016/j.envres.2019.108587
dc.relationYuan, S., Wang, J., Jiang, Q., He, Z., Huang, Y., Li, Z., Cai, L., & Cao, S. (2019b). Longterm exposure to MP2.5 and stroke: A systematic review and meta-analysis of cohort studies. Environmental Research, 177(13), 108587. https://doi.org/10.1016/j.envres.2019.108587
dc.relationZhang, Y., Hu, H., Shi, Y., Yang, X., Cao, L., Wu, J., Asweto, C. O., Feng, L., Duan, J., & Sun, Z. (2017). Science of the Total Environment H NMR-based metabolomics study on repeat dose toxicity of fi ne particulate matter in rats after intratracheal instillation. 589, 212–221. https://doi.org/10.1016/j.scitotenv.2017.02.149
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectAir pollution
dc.subjectBlood pressure
dc.subjectWaist circumference
dc.subjectFasting sugar levels
dc.subjectContaminación atmosférica
dc.subjectPresión arterial
dc.subjectCircunferencia de la cintura
dc.subjectNiveles de azúcar en ayunas
dc.titleAsociación de la exposición a contaminantes atmosféricos y el síndrome metabólico en adultos: una revisión sistemática y un metaanálisis
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución