dc.creator | Hu, Hanyu | |
dc.creator | Shan, Weifeng | |
dc.creator | Tang, Yixiang | |
dc.creator | Asghar Heidari, Ali | |
dc.creator | Chen, Huiling | |
dc.creator | Liu, Haijun | |
dc.creator | Wang, Maofa | |
dc.creator | Escorcia-Gutierrez, José | |
dc.creator | Mansour, Romany F | |
dc.creator | Chen, Jun | |
dc.date | 2023-05-12T21:53:04Z | |
dc.date | 2023-05-12T21:53:04Z | |
dc.date | 2022 | |
dc.date.accessioned | 2023-10-03T20:08:08Z | |
dc.date.available | 2023-10-03T20:08:08Z | |
dc.identifier | Hanyu Hu, Weifeng Shan, Yixiang Tang, Ali Asghar Heidari, Huiling Chen, Haijun Liu, Maofa Wang, José Escorcia-Gutierrez, Romany F Mansour, Jun Chen, Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection, Journal of Computational Design and Engineering, Volume 9, Issue 6, December 2022, Pages 2524–2555, https://doi.org/10.1093/jcde/qwac119 | |
dc.identifier | 2288-4300 | |
dc.identifier | https://hdl.handle.net/11323/10112 | |
dc.identifier | 10.1093/jcde/qwac119 | |
dc.identifier | 2288-5048 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174436 | |
dc.description | The sine cosine algorithm (SCA) is a metaheuristic algorithm proposed in recent years that does not resort to nature-related metaphors but explores and exploits the search space with the help of two simple mathematical functions of sine and cosine. SCA has fewer parameters and a simple structure and is widely used in various fields. However, it tends to fall into local optimality because it does not have a well-balanced exploitation and exploration phase. Therefore, in this paper, a new, improved SCA algorithm (QCSCA) is proposed to improve the performance of the algorithm by introducing a quick move mechanism and a crisscross mechanism to SCA and adaptively improving one of the parameters. To verify the effectiveness of QCSCA, comparison experiments with some conventional metaheuristic algorithms, advanced metaheuristic algorithms, and SCA variants are conducted on IEEE CEC2017 and CEC2013. The experimental results show a significant improvement in the convergence speed and the ability to jump out of the local optimum of the QCSCA. The scalability of the algorithm is verified in the benchmark function. In addition, QCSCA is applied to 14 real-world datasets from the UCI machine learning database for selecting a subset of near-optimal features, and the experimental results show that QCSCA is still very competitive in feature selection (FS) compared to similar algorithms. Our experimental results and analysis show that QCSCA is an effective method for solving global optimization problems and FS problems. | |
dc.format | 32 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Oxford University Press | |
dc.publisher | United Kingdom | |
dc.relation | Journal of Computational Design and Engineering | |
dc.relation | Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved oppositionbased sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500. https://doi.org/10.1016/j.eswa
.2017.07.043. | |
dc.relation | Abdelaziz, A. Y., & Fathy, A. (2017). A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Engineering Science and Technology, an International Journal, 20(2), 391–402. https://doi.org/10.1016/j.jestch.2017.02.004. | |
dc.relation | Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A.W. (2021a).
Metaheuristic algorithms on feature selection: A survey of one
decade of research (2009–2019).IEEE Access, 9, 26766–26791.https:
//doi.org/10.1109/ACCESS.2021.3056407. | |
dc.relation | Agrawal, P., Ganesh, T., & Mohamed, A. W. (2021b). A novel
binary gaining–sharing knowledge-based optimization
algorithm for feature selection. Neural Computing and
Applications, 33(11), 5989–6008. https://doi.org/10.1007/s005
21-020-05375-8. | |
dc.relation | Ahmadianfar, I., Asghar Heidari, A., Gandomi, A. H., Chu, X., & Chen,
H. (2021). RUN beyond the metaphor: An efficient optimization
algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079. https://doi.org/https://doi.org/10.1016/j.es
wa.2021.115079. | |
dc.relation | Ahmadianfar, I., Asghar Heidari, A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm
based on weighted mean of vectors. Expert Systems with Applications, 195, 116516. https://doi.org/https://doi.org/10.1016/j.eswa
.2022.116516. | |
dc.relation | Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12. https://doi.org/10.1016/
j.compstruc.2016.03.001. | |
dc.relation | Attia, A. F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power
flow solution in power systems using a novel sine-cosine algorithm. International Journal of Electrical Power & Energy Systems, 99,
331–343. https://doi.org/10.1016/j.ijepes.2018.01.024. | |
dc.relation | Awad, N. H., Ali, M. Z., Liang, J. J., Quv, B. Y., & Suganthan, P. N.
(2016). Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained realparameter numerical optimization. Technical report. Nanyang Technological University. http://www.ntu.edu.sg/home/epnsugan/. | |
dc.relation | Bureerat, S., & Pholdee, N. (2017). Adaptive sine cosine algorithm
integrated with differential evolution for structural damage detection. In International Conference on Computational Science and Its
Applications(pp. 71–86). https://doi.org/10.1007/978-3-319-62392-
4_6. | |
dc.relation | Cai, J., Luo, J., Wang, S., & Yang, S. (2018a). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70–79.
https://doi.org/10.1016/j.neucom.2017.11.077. | |
dc.relation | Cai, Z., Gu, J., Wen, C., Zhao, D., Huang, C., Huang, H., & Chen,
H. (2018b). An intelligent Parkinson’s disease diagnostic system
based on a chaotic bacterial foraging optimization enhanced
fuzzy KNN approach. Computational and Mathematical Methods in
Medicine, 2018, 2396952. https://doi.org/10.1155/2018/2396952. | |
dc.relation | Cao, B., Zhao, J., Lv, Z., & Yang, P. (2020). Diversified personalized recommendation optimization based on mobile data. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2133–2139. https:
//doi.org/10.1109/TITS.2020.3040909. | |
dc.relation | Cao, B., Li, M., Liu, X., Zhao, J., Cao, W., & Lv, Z. (2021a). Many-objective
deployment optimization for a drone-assisted camera network.
IEEE Transactions on Network Science and Engineering, 8(4), 2756–
2764. https://doi.org/10.1109/TNSE.2021.3057915. | |
dc.relation | Cao, B., Sun, Z., Zhang, J., & Gu, Y. (2021b). Resource allocation in 5G
IoV architecture based on SDN and fog-cloud computing. IEEE
Transactions on Intelligent Transportation Systems, 22(6), 3832–3840.
https://doi.org/10.1109/TITS.2020.3048844. | |
dc.relation | Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y., & Yang, P.
(2021c). Large-scale many-objective deployment optimization of
edge servers. IEEE Transactions on Intelligent Transportation Systems,
22(6), 3841–3849. https://doi.org/10.1109/TITS.2021.3059455. | |
dc.relation | Cao, X., Sun, X., Xu, Z., Zeng, B., & Guan, X. (2022). Hydrogen-based
networked microgrids planning through two-stage stochastic
programming with mixed-integer conic recourse. IEEE Transactions on Automation Science and Engineering, 19, 3672–3685. https:
//doi.org/10.1109/TASE.2021.3130179. | |
dc.relation | Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection
methods. Computers & Electrical Engineering, 40(1), 16–28. https://
doi.org/10.1016/j.compeleceng.2013.11.024. | |
dc.relation | Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A. A., Aljarah, I.,
& Faris, H. (2020). Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification.
Neural Computing and Applications, 32(16), 12201–12220. https://do
i.org/10.1007/s00521-019-04368-6. | |
dc.relation | Chen, H. L., Yang, B., Wang, S. J., Wang, G., Liu, D. Y., Li, H. Z., & Liu,
W. B. (2014). Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy. Applied
Mathematics and Computation, 239, 180–197. https://doi.org/10.101
6/j.amc.2014.04.039. | |
dc.relation | Chen, H., Jiao, S., Heidari, A. A., Wang, M., Chen, X., & Zhao, X. (2019).
An opposition-based sine cosine approach with local search for
parameter estimation of photovoltaic models. Energy Conversion
and Management, 195, 927–942. https://doi.org/10.1016/j.enconm
an.2019.05.057. | |
dc.relation | Chen, H., Heidari, A. A., Zhao, X., Zhang, L., & Chen, H. (2020a). Advanced orthogonal learning-driven multi-swarm sine cosine optimization: Framework and case studies. Expert Systems with Applications, 144, 113113. https://doi.org/10.1016/j.eswa.2019.113113. | |
dc.relation | Chen, H., Wang, M., & Zhao, X. (2020b). A multi-strategy enhanced
sine cosine algorithm for global optimization and constrained
practical engineering problems. Applied Mathematics and Computation, 369, 124872. https://doi.org/10.1016/j.amc.2019.124872. | |
dc.relation | Chen, C., Wang, X., Yu, H., Zhao, N., Wang, M., & Chen, H. (2020c).
An enhanced comprehensive learning particle swarm optimizer with the elite-based dominance scheme. Complexity, 2020,
4968063. https://doi.org/10.1155/2020/4968063. | |
dc.relation | Chen, H., Xiong, Y., Li, S., Song, Z., Hu, Z., & Liu, F. (2022). Multisensor data driven with PARAFAC-IPSO-PNN for identification of
mechanical nonstationary multi-fault mode. Machines, 10(2), 155.
https://doi.org/10.3390/machines10020155. | |
dc.relation | Dara, S., & Banka, H. (2014). A binary PSO feature selection algorithm
for gene expression data. In Proceedings of the 2014 International
Conference on Advances in Communication and Computing Technologies(pp. 1–6). https://doi.org/10.1109/EIC.2015.7230734. | |
dc.relation | Deng, W., Xu, J., Song, Y., & Zhao, H. (2020). An effective improved
co-evolution ant colony optimisation algorithm with multistrategies and its application. International Journal of Bio-Inspired
Computation, 16(3), 158–170. https://doi.org/10.1504/IJBIC.2020.1
11267. | |
dc.relation | Deng, W., Xu, J., Zhao, H., & Song, Y. (2022). A novel gate resource
allocation method using improved PSO-based QEA. IEEE Transactions on Intelligent Transportation Systems, 23, 1737–1745. https:
//doi.org/10.1109/TITS.2020.3025796. | |
dc.relation | Deng, W., Zhang, X., Zhou, Y., Liu, Y., Zhou, X., Chen, H., & Zhao,
H. (2022). An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences,
585, 441–453. https://doi.org/https://doi.org/10.1016/j.ins.2021.1
1.052. | |
dc.relation | Díaz, P., Pérez-Cisneros, M., Cuevas, E., Avalos, O., Gálvez, J., Hinojosa,
S., & Zaldivar, D. (2018). An improved crow search algorithm applied to energy problems. Energies, 11(3), 571. https://doi.org/10.3
390/en11030571. | |
dc.relation | Dong, J., Cong, Y., Sun, G., Fang, Z., & Ding, Z. (2021). Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2021.3128560. | |
dc.relation | Dong, R., Chen, H., Heidari, A. A., Turabieh, H., Mafarja, M., & Wang, S. (2021). Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. KnowledgeBased Systems, 233, 107529. https://doi.org/https://doi.org/10.1016/j.knosys.2021.107529. | |
dc.relation | Ewees, A. A., Abd Elaziz, M., Al-Qaness, M. A., Khalil, H. A., & Kim, S. (2020). Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation. IEEE Access, 8, 26304–26315. https://doi.org/10.1109/ACCESS.202 0.2971249. | |
dc.relation | Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., Ala’M, A. Z., Mirjalili, S., & Fujita, H. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge Based Systems, 154, 43–67. https://doi.org/10.1016/j.knosys.2018.05.009. | |
dc.relation | Gao, D., Wang, G. G., & Pedrycz, W. (2020). Solving fuzzy job-shop
scheduling problem using DE algorithm improved by a selection
mechanism. IEEE Transactions On Fuzzy Systems, 28(12), 3265–3275.
https://doi.org/10.1109/TFUZZ.2020.3003506. | |
dc.relation | Guan, R., Zhang, H., Liang, Y., Giunchiglia, F., Huang, L., & Feng, X.
(2022a). Deep feature-based text clustering and its explanation.
IEEE Transactions on Knowledge and Data Engineering, 34, 3669–3680.
https://doi.org/10.1109/TKDE.2020.3028943. | |
dc.relation | Guan, Q., Chen, Y., Wei, Z., Heidari, A. A., Hu, H., Yang, X. H., & Chen, F.
(2022b). Medical image augmentation for lesion detection using
a texture-constrained multichannel progressive GAN. Computers
in Biology and Medicine, 145, 105444. https://doi.org/https://doi.or
g/10.1016/j.compbiomed.2022.105444. | |
dc.relation | Gupta, S., & Deep, K. (2019a). A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Systems with Applications, 119, 210–230. https://doi.org/10.1016/j.eswa.2018.10.050. | |
dc.relation | Gupta, S., & Deep, K. (2019b). Improved sine cosine algorithm with
crossover scheme for global optimization. Knowledge-Based Systems, 165, 374–406. https://doi.org/https://doi.org/10.1016/j.knos
ys.2018.12.008. | |
dc.relation | Gupta, S., Deep, K., & Engelbrecht, A. P. (2020). A memory guided sine
cosine algorithm for global optimization. Engineering Applications
of Artificial Intelligence, 93, 103718. https://doi.org/10.1016/j.enga
ppai.2020.103718. | |
dc.relation | Hall, M. A. (1999). Correlation-based feature selection for machine learning.
Ph.D. Thesis, The University of Waikato. https://hdl.handle.net/1
0289/15043. | |
dc.relation | Han, X., Han, Y., Chen, Q., Li, J., Sang, H., Liu, Y., & Nojima, Y. (2021).
Distributed flow shop scheduling with sequence-dependent
setup times using an improved iterated greedy algorithm. Complex System Modeling and Simulation, 1(3), 198–217. https://doi.org/
10.23919/CSMS.2021.0018. | |
dc.relation | Hassan, B. A. (2021). CSCF: A chaotic sine cosine firefly algorithm for
practical application problems. Neural Computing and Applications,
33(12), 7011–7030. https://doi.org/10.1007/s00521-020-05474-6. | |
dc.relation | He, Z., Yen, G. G., & Yi, Z. (2018). Robust multiobjective optimization
via evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 23(2), 316–330. https://doi.org/10.1109/TEVC.2018.2859
638. | |
dc.relation | He, Z., Yen, G. G., & Lv, J. (2019). Evolutionary multiobjective optimization with robustness enhancement. IEEE Transactions on Evolutionary Computation, 24(3), 494–507. https://doi.org/10.1109/TEVC.201
9.2933444. | |
dc.relation | He, Z., Yen, G. G., & Ding, J. (2020). Knee-based decision making and
visualization in many-objective optimization. IEEE Transactions on
Evolutionary Computation, 25(2), 292–306. https://doi.org/10.1109/
TEVC.2020.3027620. | |
dc.relation | Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen,
H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems-the International Journal
of Escience, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.0
28. | |
dc.relation | Heidari, A. A., Aljarah, I., Faris, H., Chen, H., Luo, J., & Mirjalili, S. (2020).
An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Computing and Applications,
32, 5185–5211. https://doi.org/10.1007/s00521-019-04015-0. | |
dc.relation | Hu, Z., Wang, J., Zhang, C., Luo, Z., Luo, X., Xiao, L., & Shi, J. (2022).
Uncertainty modeling for multicenter autism spectrum disorder classification using Takagi–Sugeno–Kang fuzzy systems. IEEE
Transactions on Cognitive and Developmental Systems, 14(2), 730–739.
https://doi.org/10.1109/TCDS.2021.3073368. | |
dc.relation | Hua, Y., Liu, Q., Hao, K., & Jin, Y. (2021). A survey of evolutionary algorithms for multi-objective optimization problems with irregular
Pareto fronts. IEEE/CAA Journal of Automatica Sinica, 8(2), 303–318.
https://doi.org/10.1109/JAS.2021.1003817. | |
dc.relation | Huang, H., Heidari, A. A., Xu, Y., Wang, M., Liang, G., Chen, H., &
Cai, X. (2020). Rationalized sine cosine optimization with efficient
searching patterns. IEEE Access, 8, 61471–61490. https://doi.org/10
.1109/ACCESS.2020.2983451. | |
dc.relation | Hussien, A. G., Heidari, A. A., Ye, X., Liang, G., Chen, H., & Pan, Z. (2022).
Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method. Engineering
with Computers. https://doi.org/10.1007/s00366-021-01542-0. | |
dc.relation | Islam, M. R., Ali, S. M., Fathollahi-Fard, A. M., & Kabir, G. (2021). A novel
particle swarm optimization-based grey model for the prediction
of warehouse performance. Journal of Computational Design and Engineering, 8(2), 705–727. https://doi.org/10.1093/jcde/qwab009. | |
dc.relation | Issa, M., Hassanien, A. E., Oliva, D., Helmi, A., Ziedan, I., & Alzohairy,
A. (2018). ASCA-PSO: Adaptive sine cosine optimization algorithm
integrated with particle swarm for pairwise local sequence alignment. Expert Systems with Applications, 99, 56–70. https://doi.org/
10.1016/j.eswa.2018.01.019. | |
dc.relation | Ji, Y., Tu, J., Zhou, H., Gui, W., Liang, G., Chen, H., & Wang, M. (2020).
An adaptive chaotic sine cosine algorithm for constrained and
unconstrained optimization. Complexity, 2020, 6084917. https://
doi.org/10.1155/2020/6084917. | |
dc.relation | Kale, G. A., & Yüzgeç, U. (2022). Advanced strategies on update mechanism of sine cosine optimization algorithm for feature selection
in classification problems. Engineering Applications of Artificial Intelligence, 107, 104506. https://doi.org/10.1016/j.engappai.2021.10
4506. | |
dc.relation | Kaveh, A., & Mahdavi, V. R. (2019). Multi-objective colliding bodies
optimization algorithm for design of trusses. Journal of Computational Design and Engineering, 6(1), 49–59. https://doi.org/10.1016/j.
jcde.2018.04.001. | |
dc.relation | Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction techniques in machine learning. In
Proceedings of the 2014 Science and Information Conference(pp. 372–
378). https://doi.org/10.1109/SAI.2014.6918213. | |
dc.relation | Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning proceedings 1992(pp. 249–256). Morgan
Kaufmann. https://doi.org/10.1016/B978-1-55860-247-2.50037-1. | |
dc.relation | Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). Single
sensor-based MPPT of partially shaded PV system for battery
charging by using Cauchy and Gaussian sine cosine optimization. IEEE Transactions on Energy Conversion, 32(3), 983–992. https:
//doi.org/10.1109/TEC.2017.2669518. | |
dc.relation | Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., & Guibas, L. (2017a).
Grass: Generative recursive autoencoders for shape structures.
ACM Transactions on Graphics (TOG), 36(4), 1–14. https://doi.org/10
.1145/3072959.3073637. | |
dc.relation | Li, J., Chen, C., Chen, H., & Tong, C. (2017b). Towards context-aware
social recommendation via individual trust. Knowledge-Based Systems, 127, 58–66. https://doi.org/https://doi.org/10.1016/j.knosys
.2017.02.032. | |
dc.relation | Li, J., & Lin, J. (2020). A probability distribution detection based hybrid
ensemble QoS prediction approach. Information Sciences, 519, 289–
305. https://doi.org/https://doi.org/10.1016/j.ins.2020.01.046. | |
dc.relation | Li, J., Zheng, X. L., Chen, S. T., Song, W. W., & Chen, D. R. (2014). An efficient and reliable approach for quality-of-service-aware service
composition. Information Sciences, 269, 238–254. https://doi.org/ht
tps://doi.org/10.1016/j.ins.2013.12.015. | |
dc.relation | Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., & Tian, X.
(2017). An enhanced grey wolf optimization based feature selec tion wrapped kernel extreme learning machine for medical diagnosis. Computational and Mathematical Methods in Medicine, 2017,
9512741. https://doi.org/10.1155/2017/9512741. | |
dc.relation | Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime
mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. https://doi.org/10
.1016/j.future.2020.03.055. | |
dc.relation | Li, S., Liu, C. H., Lin, Q., Wen, Q., Su, L., Huang, G., & Ding, Z. (2020).
Deep residual correction network for partial domain adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(7),
2329–2344. https://doi.org/10.1109/TPAMI.2020.2964173. | |
dc.relation | Liang, J., Qu, B., Suganthan, P. N., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special
session on real-parameter optimization. Computational Intelligence
Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang
Technological University, Singapore, Technical Report, 201212(34), 281–
295. | |
dc.relation | Liang, H., Liu, Y., Shen, Y., Li, F., & Man, Y. (2018). A hybrid bat algorithm for economic dispatch with random wind power. IEEE
Transactions on Power Systems, 33(5), 5052–5061. https://doi.org/10
.1109/TPWRS.2018.2812711. | |
dc.relation | Liang, X., Cai, Z., Wang, M., Zhao, X., Chen, H., & Li, C. (2022). Chaotic
oppositional sine–cosine method for solving global optimization
problems. Engineering with Computers, 38, 1223–1239. https://doi.
org/10.1007/s00366-020-01083-y. | |
dc.relation | Lin, A., Wu, Q., Heidari, A. A., Xu, Y., Chen, H., Geng, W., & Li, C. (2019).
Predicting intentions of students for master programs using a
chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier. IEEE Access, 7, 67235–67248. https://doi.org/10.1109/ACCESS
.2019.2918026. | |
dc.relation | Liu, G., Jia, W., Wang, M., Heidari, A. A., Chen, H., Luo, Y., & Li, C. (2020).
Predicting cervical hyperextension injury: A covariance guided
sine cosine support vector machine. IEEE Access, 8, 46895–46908.
https://doi.org/10.1109/ACCESS.2020.2978102. | |
dc.relation | Liu, X., Zhao, J., Li, J., Cao, B., & Lv, Z. (2022). Federated neural architecture search for medical data security.IEEE Transactions on Industrial
Informatics, 18(8), 5628–5636. https://doi.org/10.1109/TII.2022.314
4016. | |
dc.relation | Long, W., Wu, T., Liang, X., & Xu, S. (2019). Solving high-dimensional
global optimization problems using an improved sine cosine algorithm. Expert Systems with Applications, 123, 108–126. https://do
i.org/10.1016/j.eswa.2018.11.032. | |
dc.relation | Mafarja, M., Heidari, A. A., Habib, M., Faris, H., Thaher, T., & Aljarah, I. (2020). Augmented whale feature selection for IoT attacks: Structure, analysis and applications. Future Generation
Computer Systems, 112, 18–40. https://doi.org/10.1016/j.future.202
0.05.020. | |
dc.relation | Mahdad, B., & Srairi, K. (2018). A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electrical Engineering, 100(2), 913–933. https://doi.org/10.100
7/s00202-017-0539-x. | |
dc.relation | Meng, A.-b., Chen, Y.-c., Yin, H., & Chen, S.-z. (2014). Crisscross optimization algorithm and its application. Knowledge-Based Systems,
67, 218–229. https://doi.org/10.1016/j.knosys.2014.05.004. | |
dc.relation | Meng, A., Zeng, C., Wang, P., Chen, D., Zhou, T., Zheng, X., & Yin,
H. (2021). A high-performance crisscross search based grey wolf
optimizer for solving optimal power flow problem. Energy, 225,
120211. https://doi.org/10.1016/j.energy.2021.120211. | |
dc.relation | Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133. https:
//doi.org/10.1016/j.knosys.2015.12.022. | |
dc.relation | Mirjalili, S., Dong, J. S., & Lewis, A. (2019). Nature-inspired optimizers:
Theories, literature reviews and applications(Vol. 811). Springer. | |
dc.relation | Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.
advengsoft.2016.01.008. | |
dc.relation | Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer.
Advances in Engineering Software, 69, 46–61. https://doi.org/10.101
6/j.advengsoft.2013.12.007. | |
dc.relation | Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2020). Gainingsharing knowledge based algorithm for solving optimization
problems: A novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11(7), 1501–1529. https:
//doi.org/10.1007/s13042-019-01053-x. | |
dc.relation | Mohammadi, F., & Abdi, H. (2018). A modified crow search algorithm
(MCSA) for solving economic load dispatch problem. Applied
Soft Computing, 71, 51–65. https://doi.org/10.1016/j.asoc.2018.06.0
40. | |
dc.relation | Mou, J., Duan, P., Gao, L., Liu, X., & Li, J. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation
flow-shop inverse scheduling. Future Generation Computer Systems,
128, 521–537. https://doi.org/10.1016/j.future.2021.10.003. | |
dc.relation | Nenavath, H., & Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Applied Soft Computing, 62, 1019–1043. https://doi.or
g/10.1016/j.asoc.2017.09.039. | |
dc.relation | Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.https://doi.org/10.1007/s11721
-007-0002-0. | |
dc.relation | Qi, A., Zhao, D., Yu, F., Heidari, A. A., Chen, H., & Xiao, L. (2022).
Directional mutation and crossover for immature performance
of whale algorithm with application to engineering optimization. Journal of Computational Design and Engineering, 9(2), 519–563.
https://doi.org/10.1093/jcde/qwac014. | |
dc.relation | Qiao, S., Yu, H., Heidari, A. A., El-Saleh, A. A., Cai, Z., Xu, X., & Chen,
H. (2022). Individual disturbance and neighborhood mutation
search enhanced whale optimization: Performance design for engineering problems. Journal of Computational Design and Engineering,
9, 1817–1851. https://doi.org/10.1093/jcde/qwac081. | |
dc.relation | Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., & Fortino, G. (2022).
Multi-sensor information fusion based on machine learning for
real applications in human activity recognition: State-of-the-art
and research challenges. Information Fusion, 80, 241–265. https://
doi.org/10.1016/j.inffus.2021.11.006. | |
dc.relation | Shahabi, F., Pourahangarian, F., & Beheshti, H. (2019). A multilevel image thresholding approach based on crow search algorithm and
Otsu method. Journal of Decisions and Operations Research, 4(1), 33–
41. https://doi.org/10.22105/dmor.2019.88580. | |
dc.relation | Shan, W., Qiao, Z., Heidari, A. A., Chen, H., Turabieh, H., & Teng, Y.
(2021). Double adaptive weights for stabilization of moth flame
optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowledge-Based Systems, 214, 106728. https://doi.org/10
.1016/j.knosys.2020.106728. | |
dc.relation | Shan, W., Hu, H., Cai, Z., Chen, H., Liu, H., Wang, M., & Teng, Y.
(2022a). Multi-strategies boosted mutative crow search algorithm
for global tasks: Cases of continuous and discrete optimization.
Journal of Bionic Engineering, 19, 1830–1849. https://doi.org/10.100
7/s42235-022-00228-7. | |
dc.relation | Shan, W., Qiao, Z., Heidari, A. A., Gui, W., Chen, H., Teng, Y., & Lv, T.
(2022b). An efficient rotational direction heap-based optimization
with orthogonal structure for medical diagnosis. Computers in Biology and Medicine, 146, 105563. https://doi.org/10.1016/j.compbi
omed.2022.105563. | |
dc.relation | Song, J., Chen, C., Heidari, A. A., Liu, J., Yu, H., & Chen, H. (2022). Performance optimization of annealing salp swarm algorithm: Frameworks and applications for engineering design. Journal of Computational Design and Engineering, 9(2), 633–669. https://doi.org/10.1
093/jcde/qwac021. | |
dc.relation | Tang, D. (2019). Spherical evolution for solving continuous optimization problems. Applied Soft Computing, 81, 105499. https://doi.org/
10.1016/j.asoc.2019.105499. | |
dc.relation | Taradeh, M., Mafarja, M., Heidari, A. A., Faris, H., Aljarah, I., Mirjalili,
S., & Fujita, H. (2019). An evolutionary gravitational search-based
feature selection. Information Sciences, 497, 219–239. https://doi.or
g/10.1016/j.ins.2019.05.038. | |
dc.relation | Tu, J., Chen, H., Wang, M., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18(3), 674–710. https:
//doi.org/10.1007/s42235-021-0050-y. | |
dc.relation | Wang, D., Liang, Y., Xu, D., Feng, X., & Guan, R. J. K. B. S. (2018a). A
content-based recommender system for computer science publications. Knowledge-Based Systems, 157, 1–9. https://doi.org/10.1
016/j.knosys.2018.05.001. | |
dc.relation | Wang, J., Yang, W., Du, P., & Niu, T. (2018b). A novel hybrid forecasting
system of wind speed based on a newly developed multi-objective
sine cosine algorithm. Energy Conversion and Management, 163,
134–150. https://doi.org/10.1016/j.enconman.2018.02.012. | |
dc.relation | Wang, H., Gao, Q., Li, H., Wang, H., Yan, L., & Liu, G. (2020). A structural evolution-based anomaly detection method for generalized
evolving social networks. The Computer Journal, 65(5), 1189–1199.
https://doi.org/10.1093/comjnl/bxaa168. | |
dc.relation | Wang, G., Gui, W., Liang, G., Zhao, X., Wang, M., Mafarja, M., & Ma, X.
(2021). Spiral motion enhanced elite whale optimizer for global
tasks. Complexity, 2021, 8130378. https://doi.org/10.1155/2021/8
130378. | |
dc.relation | Wang, G. G., Gao, D., & Pedrycz, W. (2022). Solving multi-objective
fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm. IEEE Transactions on Industrial Informatics,
18, 8519–8528. https://doi.org/10.1109/TII.2022.3165636. | |
dc.relation | Wang, S. H., & Zhang, Y. D. (2020). DenseNet-201-based deep neural
network with composite learning factor and precomputation for
multiple sclerosis classification. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 16(2s), 1–19.
https://doi.org/10.1145/3341095. | |
dc.relation | Wang, Y., Wang, H., Zhou, B., & Fu, H. (2021). Multi-dimensional prediction method based on Bi-LSTMC for ship roll. Ocean Engineering,
242, 110106. https://doi.org/10.1016/j.oceaneng.2021.110106. | |
dc.relation | Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1),
67–82. https://doi.org/10.1109/4235.585893. | |
dc.relation | Wu, Z., Wang, R., Li, Q., Lian, X., & Xu, G. (2020a). A location privacypreserving system based on query range cover-up for locationbased services. IEEE Transactions on Vehicular Technology, 69, 5244–
5254. https://doi.org/10.1109/TVT.2020.2981633. | |
dc.relation | Wu, Z., Li, R., Xie, J., Zhou, Z., Guo, J., & Xu, X. (2020b). A user sensitive
subject protection approach for book search service. Journal of the
Association for Information Science and Technology, 71(2), 183–195. ht
tps://doi.org/10.1002/asi.24227. | |
dc.relation | Wu, Z., Shen, S., Lian, X., Su, X., & Chen, E. (2020c). A dummy-based
user privacy protection approach for text information retrieval.
Knowledge-Based Systems, 195, 105679. https://doi.org/10.1016/j.
knosys.2020.105679. | |
dc.relation | Wu, Z., Li, G., Shen, S., Cui, Z., Lian, X., & Xu, G. (2021a). Constructing
dummy query sequences to protect location privacy and query
privacy in location-based services. World Wide Web, 24(1), 25–49.
https://doi.org/10.1007/s11280-020-00830-x. | |
dc.relation | Wu, Z., Shen, S., Zhou, H., Li, H., Lu, C., & Zou, D. (2021b). An effective
approach for the protection of user commodity viewing privacy in
e-commerce website.Knowledge-Based Systems, 220, 106952.https:
//doi.org/10.1016/j.knosys.2021.106952. | |
dc.relation | Wu, X., Zheng, W., Xia, X., & Lo, D. (2022). Data quality matters: A case
study on data label correctness for security bug report prediction.
IEEE Transactions on Software Engineering, 48, 2541–2556. https://do
i.org/10.1109/TSE.2021.3063727. | |
dc.relation | Xia, J., Yang, D., Zhou, H., Chen, Y., Zhang, H., Liu, T., & Pan, Z. (2022).
Evolving kernel extreme learning machine for medical diagnosis
via a disperse foraging sine cosine algorithm. Computers in Biology
and Medicine, 141, 105137. https://doi.org/10.1016/j.compbiomed
.2021.105137. | |
dc.relation | Xiao, Y., Zuo, X., Huang, J., Konak, A., & Xu, Y. (2020). The continuous
pollution routing problem. Applied Mathematics and Computation,
387, 125072. https://doi.org/10.1016/j.amc.2020.125072. | |
dc.relation | Xiao, Y., Zhang, Y., Kaku, I., Kang, R., & Pan, X. (2021). Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renewable and Sustainable Energy Reviews, 151, 111567. https:
//doi.org/10.1016/j.rser.2021.111567. | |
dc.relation | Xiong, G., Yuan, X., Mohamed, A. W., Chen, J., & Zhang, J. (2022). Improved binary gaining–sharing knowledge-based algorithm with
mutation for fault section location in distribution networks. Journal of Computational Design and Engineering, 9(2), 393–405. https:
//doi.org/10.1093/jcde/qwac007. | |
dc.relation | Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger
games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems
with Applications, 177, 114864. https://doi.org/10.1016/j.eswa.202
1.114864. | |
dc.relation | Yang, Z., Chen, H., Zhang, J., & Chang, Y. (2022). Context-aware attentive multi-level feature fusion for named entity recognition.
IEEE Transactions on Neural Networks and Learning Systems. https:
//doi.org/10.1109/TNNLS.2022.3178522. | |
dc.relation | Ye, X., Liu, W., Li, H., Wang, M., Chi, C., Liang, G., & Huang, H. (2021).
Modified whale optimization algorithm for solar cell and PV module parameter identification. Complexity, 2021, 8878686. https:
//doi.org/10.1155/2021/8878686. | |
dc.relation | Yu, H., Yuan, K., Li, W., Zhao, N., Chen, W., Huang, C., & Wang, M.
(2021). Improved butterfly optimizer-configured extreme learning
machine for fault diagnosis. Complexity, 2021, 6315010. https://do
i.org/10.1155/2021/6315010. | |
dc.relation | Yu, H., Qiao, S., Heidari, A. A., El-Saleh, A. A., Bi, C.,Mafarja,M., & Chen,
H. (2022a). Laplace crossover and random replacement strategy
boosted Harris hawks optimization: Performance optimization
and analysis. Journal of Computational Design and Engineering, 9,
1879–1916. https://doi.org/10.1093/jcde/qwac085. | |
dc.relation | Yu, H., Qiao, S., Heidari, A. A., Bi, C., & Chen, H. (2022b). Individual
disturbance and attraction repulsion strategy enhanced seagull
optimization for engineering design. Mathematics, 10(2), 276. http
s://doi.org/10.3390/math10020276. | |
dc.relation | Yu, H., Cheng, X., Chen, C., Heidari, A. A., Liu, J., Cai, Z., & Chen, H.
(2022c). Apple leaf disease recognition method with improved
residual network. Multimedia Tools and Applications, 81, 7759–7782.
https://doi.org/10.1007/s11042-022-11915-2. | |
dc.relation | Yu, H., Song, J., Chen, C., Heidari, A. A., Liu, J., Chen, H., & Mafarja, M.
(2022d). Image segmentation of leaf spot diseases on maize using
multi-stage Cauchy-enabled grey wolf algorithm. Engineering Applications of Artificial Intelligence, 109, 104653. https://doi.org/https:
//doi.org/10.1016/j.engappai.2021.104653. | |
dc.relation | Yu, S., Chen, Z., Heidari, A. A., Zhou, W., Chen, H., & Xiao, L. (2022). Parameter identification of photovoltaic models using a sine cosine
differential gradient based optimizer. IET Renewable Power Generation 16, 1535–1561. https://doi.org/10.1049/rpg2.12451. | |
dc.relation | Zhang, M., Chen, Y., & Lin, J. (2021). A privacy-preserving optimization
of neighborhood-based recommendation for medical-aided diagnosis and treatment. IEEE Internet of Things Journal, 8(13), 10830–
10842. https://doi.org/10.1109/JIOT.2021.3051060. | |
dc.relation | Zhang, X. Q., Hu, W. M., Xie, N. H., Bao, H. J., & Maybank, S. (2015).
A robust tracking system for low frame rate video. International
Journal of Computer Vision, 115(3), 279–304. https://doi.org/10.100
7/s11263-015-0819-8. | |
dc.relation | Zhang, Y. D., Dong, Z., Wang, S. H., Yu, X., Yao, X., Zhou, Q.,
& Gorriz, J. M. (2020). Advances in multimodal data fusion
in neuroimaging: Overview, challenges, and novel orientation.
Information Fusion, 64, 149–187. https://doi.org/10.1016/j.inffus.2
020.07.006. | |
dc.relation | Zhang, Y., Liu, F., Fang, Z., Yuan, B., Zhang, G., & Lu, J. (2021). Learning from a complementary-label source domain: theory and algorithms. IEEE Transactions on Neural Networks and Learning Systems.
https://doi.org/10.1109/TNNLS.2021.3086093. | |
dc.relation | Zhao, W., Shi, T., Wang, L., Cao, Q., & Zhang, H. (2021). An
adaptive hybrid atom search optimization with particle swarm
optimization and its application to optimal no-load PID design of hydro-turbine governor. Journal of Computational Design
and Engineering, 8(5), 1204–1233. https://doi.org/10.1093/jcde/qwa
b041. | |
dc.relation | Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Chen, H., & Muhammad, K. (2022). Opposition-based ant colony optimization with
all-dimension neighborhood search for engineering design. Journal of Computational Design and Engineering, 9(3), 1007–1044. https:
//doi.org/10.1093/jcde/qwac038. | |
dc.relation | Zhong, L., Fang, Z., Liu, F., Yuan, B., Zhang, G., & Lu, J. (2021). Bridging
the theoretical bound and deep algorithms for open set domain
adaptation. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3119965. | |
dc.relation | Zhou, W., Liu, J., Lei, J., Yu, L., & Hwang, J. N. (2021a). GMNet:
Graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation. IEEE Transactions on Image Processing, 30, 7790–7802. https://doi.org/10.1109/TIP.2021.3109518. | |
dc.relation | Zhou, W., Wang, P., Heidari, A. A., Wang, M., Zhao, X., & Chen, H.
(2021b). Multi-core sine cosine optimization: Methods and inclusive analysis. Expert Systems with Applications, 164, 113974. https:
//doi.org/10.1016/j.eswa.2020.113974. | |
dc.relation | Zhou, X., Gui, W., Heidari, A. A., Cai, Z., Elmannai, H., Hamdi, M.,
& Chen, H. (2022). Advanced orthogonal learning and Gaussian
barebone hunger games for engineering design. Journal of Computational Design and Engineering, 9(5), 1699–1736. https://doi.org/10
.1093/jcde/qwac075. | |
dc.relation | Zhu, W., Ma, C., Zhao, X., Wang, M., Heidari, A. A., Chen, H., & Li, C.
(2020). Evaluation of sino foreign cooperative education project
using orthogonal sine cosine optimized kernel extreme learning
machine. IEEE Access, 8, 61107–61123. https://doi.org/10.1109/AC
CESS.2020.2981968. | |
dc.relation | Zou, Q., Li, A., He, X., & Wang, X. (2018). Optimal operation of cascade hydropower stations based on chaos cultural sine cosine
algorithm. IOP Conference Series: Materials Science and Engineering,
366(1), 012005. https://doi.org/10.1088/1757-899X/366/1/012005. | |
dc.relation | 2555 | |
dc.relation | 2524 | |
dc.relation | 2 | |
dc.relation | 9 | |
dc.rights | Copyright © 2023 Society for Computational Design and Engineering | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://academic.oup.com/jcde/article/9/6/2524/6795289 | |
dc.subject | Sine cosine algorithm | |
dc.subject | Feature selection | |
dc.subject | Global optimization | |
dc.subject | Metaheuristic algorithms | |
dc.title | Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |