dc.creatorSilva, Jesús
dc.creatorHiga, Yuki
dc.creatorCera Visbal, Juan Manuel
dc.creatorCabrera, Danelys
dc.creatorSenior Naveda, Alexa
dc.creatorFlores, Yasmin
dc.creatorPineda Lezama, Omar Bonerge
dc.date2021-01-15T18:12:41Z
dc.date2021-01-15T18:12:41Z
dc.date2021
dc.date.accessioned2023-10-03T20:07:42Z
dc.date.available2023-10-03T20:07:42Z
dc.identifierhttps://hdl.handle.net/11323/7699
dc.identifierhttps://doi.org/10.1007/978-981-15-7234-0_89
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174400
dc.descriptionDue to its popularity, Twitter is currently one of the major players in the global network, which has established a new form of communication: the microblogging. Twitter has become an essential media network for the follow-up, diffusion and coordination of events of diverse nature and importance (Gonzalez-Agirre et al. in Multilingual central repository version 3.0. Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12). Istanbul, Turkey, 2012, [1]), such as a presidential campaign, a disaster situation, a war or the repercussion of information. In such scenario, it is considered a relevant source of information to know the opinions that are emitted about different issues or people. This research proposes the evaluation of several supervised classification algorithms to address the problem of opinion mining on Twitter.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relation1. Gonzalez-Agirre A, Laparra E, Laparra G (2012) Multilingual central repository version 3.0. In: Proceedings of the eight international conference on language resources and evaluation (LREC’12), May 2012. European Language Resources Association (ELRA), Istanbul, Turkey
dc.relation2. Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20(1):53–65 [Online]. Disponible: http://dx.doi.org/10.1016/0377-0427(87)90125–7
dc.relation3. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1(6):80–83
dc.relation4. Riloff E, Janyce W (2003) Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 conference on empirical methods in natural language processing, EMNLP’03. Association for Computational LinguisticsStroudsburg, PA, USA, pp 105–112
dc.relation5. Lis-Gutiérrez JP, Gaitán-Angulo M, Henao LC, Viloria A, Aguilera-Hernández D, Portillo-Medina R (2018) Measures of concentration and stability: two pedagogical tools for industrial organization courses. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Cham
dc.relation6. Zhao WX, Weng J, He J, Lim EP, Yan H (2011) Comparing twitter and traditional media using topic models. In: 33rd European conference on advances in information retrieval (ECIR11). Springer-Verlag, Berlin, Heidelberg, pp 338–349
dc.relation7. Viloria A, Gaitan-Angulo M (2016) Statistical adjustment module advanced optimizer planner and SAP generated the case of a food production company. Indian J Sci Technol 9(47). https://doi.org/10.17485/ijst/2016/v9i47/107371
dc.relation8. Villada F, Muñoz N, García E (2012) Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica 23(4):11–20
dc.relation9. Sapankevych N, Sankar R (2009) Time series prediction using support vector machines: a survey. IEEE Comput Intell Mag 4(2):24–38
dc.relation10. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206
dc.relation11. Toro EM, Mejia DA, Salazar H (2004) Pronóstico de ventas usando redes neuronales. Scientia et technica 10(26):12–25
dc.relation12. Hernández JA, Burlak G, Muñoz Arteaga J, Ochoa A (2006) Propuesta para la evaluación de objetos de aprendizaje desde una perspectiva integral usando minería de datos. En A. Hernández y J. Zechinelli (eds.) Avances en la ciencia de la computación. Universidad Autónoma de México, México, pp 382–387
dc.relation13. Romero C, Ventura S (2007) Educational data mining: a survey from 1995 to 2005. Expert Syst Appl 33(1):135–146
dc.relation14. Romero C, Ventura S (2010) Educational data mining: a review of the state of the art. Syst Man Cybern Part C Appl Rev IEEE Trans 40(6):601–618
dc.relation15. Choudhury A, Jones J (2014) Crop yield prediction using time series models. J Econ Econ Educ Res 15:53–68
dc.relation16. Scheffer T (2004) Finding association rules that trade support optimally against confidence. Intell Data Anal 9(4):381–395
dc.relation17. Ruß G (2009) Data mining of agricultural yield data: a comparison of regression models. In: Perner P (eds) Advances in data mining. Applications and theoretical aspects, ICDM 2009. Lecture notes in computer science, vol 5633
dc.relation18. Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching - learning process through knowledge data discovery (Big Data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham
dc.relation19. Berrocal JLA, Figuerola CG, Rodrıguez AZ (2013) Reina at RepLab2013 topic detection task: community detection. In: Proceedings of the fourth international conference of the CLEF initiative
dc.relation20. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11(1):10–18
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceAdvances in Intelligent Systems and Computing
dc.sourcehttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_89
dc.subjectMachine learning
dc.subjectTwitter
dc.subjectOpinion mining
dc.subjectClassification
dc.titleClassification, identification, and analysis of events on twitter through data mining
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución