dc.creatorSilva Oliveira, Luis Felipe
dc.creatorSantosh, M
dc.creatorSchindler, Michael
dc.creatorGasparotto, Juciano
dc.creatorDotto, Guilherme Luiz
dc.creatorS. Oliveira, Marcos L.
dc.creatorHochella, Jr.
dc.date2021-01-18T17:40:21Z
dc.date2021-01-18T17:40:21Z
dc.date2021
dc.date.accessioned2023-10-03T20:07:27Z
dc.date.available2023-10-03T20:07:27Z
dc.identifierhttps://hdl.handle.net/11323/7709
dc.identifierhttps://doi.org/10.1016/j.gr.2020.12.026
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174389
dc.descriptionNanoscience and technology have enabled better insights into the environmental and health impacts arising from the mining, production and use of fossil and mineral fuels. Here we provide an overview of the nanoscience-based applications and discoveries concerning coal and mineral fuel (i.e., uranium-containing minerals) mining, refining/production, use, and disposal of wastes. These processes result in massive nanoparticle release and secondary nanoparticle generation which have highly significant environmental implications and human health consequences on local, regional, and even global levels. Until recently, very little was known about nanoparticle fractions. Recent advancements and sophistications enable us to detect, collect and study these materials which are roughly 1 nm (0.001 μm) up to several tens of nanometers in size. These materials are known to behave differently (chemically, electrically, and mechanically), relative to their macroscopic equivalents. This is what makes nanoscience fascinating and difficult to predict, underscoring the importance of this emerging new field. For example, nanoparticles associated with coal and mineral fuel influence the release, uptake, and transportation of hazardous elements associated with mining, processing, and waste storage in the surrounding areas. This includes long distance transport down streams, rivers, and eventually to oceans such as from coal and uranium mine drainages. In terms of human health, in all phases of mining, production/refining, use, and waste disposal, the associated nanoparticles can be acquired through oral ingestion, inhalation, and dermal absorption. Inhalation has been shown to be particularly damaging, where lung, heart, kidney, and brain diseases are prevalent. Relative to all other fields of science and engineering associated with coal and mineral fuel mining, production, use, and clean-up efforts, nanoscience, although a much newer field then the rest by comparison, is still greatly under-represented and under-utilized. There is also a continuing gap between what we so far know about the behavior of nanoparticles, and what remains to be discovered.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relationAbdelouas, A., 2006. Uranium Mill Tailings: Geochemistry, Mineralogy and Environmental Impact. Elements 2, 335–341.
dc.relationAnke, M., Seeber, O., Müller, R., Schäfer, U., Zerull, J., 2009. Uranium transfer in the food chain from soil to plants, animals and man. Geochemistry 69, 75–90.
dc.relationBargar, J.R., Bernier-Latmani, R., Giammar, D.E., Tebo, B.M., 2008. Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation. Elements 4, 407–412.
dc.relationBasak, B.B., Sarkar, B., Sanderson, P., Naidu, R., 2018. Waste mineral powder supplies plant available potassium: Evaluation of chemical and biological interventions. Journal of Geochemical Exploration 186, 114–120.
dc.relationBernhoft, R.A., 2012. Mercury toxicity and treatment: a review of the literature. J Environ Public Health, 460508.
dc.relationBernier-Latmani, R., Veeramani, H. Vecchia, E.D., Junier P., Lexama-Pacheco, J.S., Suvorova, E.I., Sharp, J.O., Wigginton, N.S., Bargar, J.R., 2010. Non-uraninite Products of Microbial U(VI) Reduction Environmental Science &Technology 44, 9456–9462.
dc.relationBloom, M.S., Buck Louis, G.M., Sundaram, R., Maisog, J.M., Steuerwald, A.J., Parsons, P.J., 2015. Birth outcomes and background exposures to select elements, the Longitudinal Investigation of Fertility and the Environment (LIFE). Environ Res 138, 118–129.
dc.relationBriner, W., Murray, J., 2005. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats. Neurotoxicol Teratol 27, 135–144.
dc.relationBrugge, D., de Lemos, J.L., Oldmixon, B., 2005. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health 20, 177–193.
dc.relationCalderon-Garciduenas, L., Gonzalez-Maciel, A., Reynoso-Robles, R., Hammond, J., Kulesza, R., Lachmann, I., Torres-Jardon, R., Mukherjee, P.S., Maher, B.A., 2020. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles. The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract likely a key brainstem portal. Environ Res, 110139.
dc.relationCaraballo, M.A., Michel, F.M., Hochella M.F., Jr., 2015. The rapid expansion of environmental mineralogy in unconventional ways: Beyond the accepted definition of a mineral, the latest technology, and using nature as our guide. American Mineralogist, 100, 14–25.
dc.relationCariccio, V.L., Sama, A., Bramanti, P., Mazzon, E., 2019. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res 187, 341–356.
dc.relationCerqueira, B., Vega, F. A., Silva, L. F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Science of the total environment 421, 220–229
dc.relationCerqueira, B., Vega, F.A., Serra, C., Silva, L.F.O., Andrade, M.L., 2011. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of cu2+ and cu2+/pb2+ on a bt horizon surfaces. Journal of hazardous materials, 422–431.
dc.relationCiveira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F., 2016. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142–147.
dc.relationCleveland, D., Hinck, J.E., Lankton, J.S., 2021. Elemental and radionuclide exposures and uptakes by small rodents, invertebrates, and vegetation at active and post-production uranium mines in the Grand Canyon watershed. Chemosphere 263, 127908.
dc.relationCortes-Ramirez, J., Naish, S., Sly, P.D., Jagals, P., 2018. Mortality and morbidity in populations in the vicinity of coal mining: a systematic review. BMC Public Health 18, 721.
dc.relationCraft, E., Abu-Qare, A., Flaherty, M., Garofolo, M., Rincavage, H., Abou-Donia, M., 2004. Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Health B Crit Rev 7, 297–317.
dc.relationCutruneo, C., Oliveira, M.L.S., Ward, C., Hower, J., De Brum, I., Sampaio, C., Kautzmann, R., Taffarel, S., Teixeira, E., Silva, L.F., 2014. A mineralogical and geochemical study of three brazilian coal cleaning rejects: demonstration of electron beam applications. International Journal of Coal Geology 130, 33–52.
dc.relationDai, S., Wang, P., Ward, C.R., Tang, Y., Song, X., Jiang, J., Hower, J.C., Li, T., Seredin, V.V., Wagner, N.J., Jiang, Y., Wang, X., Liu, J., 2015. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: key role of N2–CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 152, 19–46.
dc.relationDashner-Titus, E.J., Hoover, J., Li, L., Lee, J.H., Du, R., Liu, K.J., Traber, M.G., Ho, E., Lewis, J., Hudson, L.G., 2018. Metal exposure and oxidative stress markers in pregnant Navajo Birth Cohort Study participants. Free Radic Biol Med 124, 484–492.
dc.relationDashner-Titus, E.J., Schilz, J.R., Simmons, K.A., Duncan, T.R., Alvarez, S.C., Hudson, L.G., 2020. Differential response of human T-lymphocytes to arsenic and uranium. Toxicol Lett 333, 269–278.
dc.relationDéjeant, A., Galoisy, L., Royd, R., Calas, G., Boekhout, F., Phrommavanh V., Descostes, M., 2016. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger. Science of the Total Environment 545, 340–352.
dc.relationDewar, D., Harvey, i., Vakil, C., 2013. Uranium mining and health. Can Fam Physician, 469–471.
dc.relationDiehl S.F., Goldhaber M.B., Koenig A.E., Lowers H.A., Ruppert L.F., 2012. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation. Int. J. Coal Geol. 94, 238–249
dc.relationDonbak, L., Rencuzogullari, E., Yavuz, A., Topaktas, M., 2005. The genotoxic risk of underground coal miners from Turkey. Mutat Res 588, 82–87.
dc.relationDuarte, A.L., DaBoit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geoscience Frontiers 10, 927–939.
dc.relationDutta, M., Saikia, J., Taffarel, S. R., Waanders, F. B., de Medeiros, D., Cutruneo, C. M., Saikia, B. K., 2017. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geoscience Frontiers. 8, 1285– 1297.
dc.relationEntwistle, J.A., Hursthouse, A.S., Marinho Reis, P.A., Stewart, A.G., 2019. Metalliferous Mine Dust: Human Health Impacts and the Potential Determinants of Disease in Mining Communities. Current Pollution Reports 5, 67–83.
dc.relationEpple, M., 2008. From Metal Complexes to Nanominerals : The Formation of Inorganic Nanoparticles on Fibrils of Transferrin. Angew. Chem. Int. Ed., 47, 4960–4961.
dc.relationEspitia-Pérez, L., da Silva, J., Espitia-Pérez, P., Brango, H., Salcedo-Arteaga, S., Hoyos-Giraldo, L.S., de Souza, C.T., Dias, J.F., Agudelo-Castañeda, D., Valdés Toscano, A., Gómez-Pérez, M., Henriques, J.A.P., 2018. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM(10) and PM(2.5) levels. Ecotoxicol Environ Saf 148, 453-466.
dc.relationEssilfie-Dughan, J., Hendry, M.J., Warner, J. and Kotzer, J., 2012. Microscale mineralogical characterization of As, Fe, and Ni in uranium mine tailings. Geochimica et Cosmochimica Acta. 96, 336–352.
dc.relationFinch, R., Murakami, T., 1999. Systematics and Paragenesis of UraniumMinerals Reviews in Mineralogy and Geochemistry 38, 91–180.
dc.relationFinkelman, R.B., Dai, S., French, D., 2019. The importance of minerals in coal as the hosts of chemical elements: A review. International Journal of Coal Geology 212, 103251.
dc.relationFraund, M., Pham, D., Bonanno, D., Harder, T., Wang, B., Brito, J., De Sá, S., Carbonere, S., China, S., Artaxo, P., Martin, S., Pohlker, C., Andreae, M., Laskin, Al., Gilles, M., Moffet, R., 2017. Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15. Atmosphere 8, 173–200.
dc.relationFrench, D., Ward, C.R., Butcher, A., 2008. QemSCAN for characterisation of coal and coal utilisation by-products Research Report 93, Co-operative Research Centre for Coal in Sustainable Development (CCSD), Brisbane, 103 pp.
dc.relationGasparotto, J., Chaves, P.R., da Boit Martinello, K., da Rosa-Siva, H.T., Bortolin, R.C., Silva, L.F.O., Rabelo, T.K., da Silva, J., da Silva, F.R., Nordin, A.P., Soares, K., Borges, M.S., Gelain, D.P., Moreira, J.C.F., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol Environ Saf 165, 44–51.
dc.relationGasparotto, J., Chaves, P.R., da Boit Martinello, K., Silva, L.F.O., Gelain, D.P., Fonseca, J.C.M., 2019. Obesity associated with coal ash inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food Chem Toxicol 133, 110766.
dc.relationGasparotto, J., Martinello K. B., 2021. Coal as an energy source and its impacts on human health. Energy Geoscience, https://doi.org/10.1016/j.engeos.2020.07.003.
dc.relationGómez, L.P., Ramos, C.G., Oliveira, M.L.S., Silva, L.F.O., 2021. Release kinetics of multi-nutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. Journal Cleaner Production 279, 123668.
dc.relationGomez, M.A., Hendry, M.J., Koshinsky,J., Essilfie-Dughan, J., Paikaray, S., Chen, J., 2013. Mineralogical Controls on Aluminum and Magnesium in Uranium Mill Tailings: Key Lake, Saskatchewan, Canada. Environmental & T h gy 47 7883−7891.
dc.relationGorby, Y.A., Lovley, D.R., 1992. Enzymatic uranium precipitation. Environmental Science & Technology 26, 205–207.
dc.relationGredilla, A., Fdez-Ortiz de Vallejuelo, S., Rodriguez-Iruretagoiena, A., Gomez, L., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F.O., 2019. Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust. Journal of Hazardous Materials, 378, 120747.
dc.relationHendryx, M., Zullig, K.J., 2009. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions. Preventive Medicine 49, 355–359.
dc.relationHendryx, M.A.I.W., Kestrel A., 2013. Increased Risk of Depression for People Living in Coal Mining Areas of Central Appalachia. Ecopsychology 5, 179–187.
dc.relationHochella, Jr., M.F. et al. 2008. Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 319, 1631.
dc.relationHochella, Jr., M.F. et al. 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363. DOI: 10.1126/science.aau8299
dc.relationHochella, M.F., Jr., Kasama, T., Putnis, A., Putnis, C., Moore, J.N., 2005b. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex. American Mineralogist 90, 718–724.
dc.relationHochella, M.F., Jr., Moore, J.N., Golla, U., and Putnis, A., 1999. A TEM study of samples from acid mine drainage systems: Metal - mineral association with implications for transport. Geochimica et Cosmochimica Acta, 63, 3395–3406.
dc.relationHochella, M.F., Jr., Moore, J.N., Putnis, C., Putnis, A., Kasama, T., Eberl, D.D., 2005a. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability. Geochimica et Cosmochimica Acta 69, 1651–1663.
dc.relationHoupert, P., Frelon, S., Lestaevel, P., Bussy, C., Gourmelon, P., Paquet, F., 2007. Parental exposure to enriched uranium induced delayed hyperactivity in rat offspring. Neurotoxicology 28, 108–113.
dc.relationHower, J.C., Andrews, W.M., Wild, G.D., Eble, C.F., Dulong, F.T., Salter, T.L., 1994. Quality of the Fire Clay coal bed, southeastern Kentucky. J. Coal Qual., 13, 13–26
dc.relationHower, J.C., O`Keefe, J.M.K., Henke, K.R., Wagner, N.J., Copley, G., Blake, D.R., Garrison, T., Oliveira, M.L.S., Kautzmann, R.M., Silva, L.F.O., 2013. Gaseous emissions and sublimates from the Truman shepherd coal fire, Floyd County, Kentucky: a re-investigation following attempted mitigation of the fire. International Journal of Coal Geology 116, 63-74.
dc.relationHund, L., Bedrick, E.J., Miller, C., Huerta, G., Nez, T., Ramone, S., Shuey, C., Cajero, M., Lewis, J., 2015. A Bayesian framework for estimating disease risk due to exposure to uranium mine and mill waste on the Navajo Nation. 178, 1069–1091.
dc.relationIshtiaq, M., Jehan, N., Khan, S.A., Muhammad, S., Saddique, U., Iftikhar, B., Zahidullah, 2018. Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. Environ Sci Pollut Res Int 25, 14666–14673.
dc.relationJoaquim, A.C., Lopes, M., Stangherlin, L., Castro, K., Ceretta, L.B., Longen, W.C., Ferraz, F., Perry, I.D.S., 2018. Mental health in underground coal miners. Arch Environ Occup Health 73, 334–343
dc.relationKaksonen, A.H., Lakaniemi, A.M., Tuovinen, O.H., 2020. Acid and ferric sulfate bioleaching of uranium ores: A review. Journal of Cleaner Production 264, 121586.
dc.relationKeith, S., Faroon, O., Roney, N., Scinicariello, F., Wilbur, S., Ingerman, L., Llados, F., Plewak, D., Wohlers, D., Diamond, G., 2013. Toxicological Profile for Uranium, Atlanta (GA).
dc.relationKelepertzis, E., 2014. Investigating the sources and potential health risks of environmental contaminants in the soils and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicol Environ Saf 100, 258– 265.
dc.relationKhijniak, T. V., Slobodkin, A. I., Coker, V., Renshaw, J. C., Livens, F. R., BonchOsmolovskaya, E. A., Birkeland, N. K., Medvedeva-Lyalikova, N. N., Lloyd, J. R. Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens. Applied Environmental Microbiology 71, 6423–6426.
dc.relationKolker A., 2012. Minor element distribution in iron disulfides in coal: a geochemical review. Int. J. Coal Geol. 94, 32–43
dc.relationKorchagin, J.; Canerb, L., Bortoluzzi, E.C., 2019. Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production 210, 749–758.
dc.relationKronbauer, M.A., Izquierdo, M., Dai, S., Waanders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliveira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view. Science of the total environment 456, 95–103.
dc.relationKurttio, P., Auvinen, A., Salonen, L., Saha, H., Pekkanen, J., Makelainen, I., Vaisanen, S.B., Penttila, I.M., Komulainen, H., 2002. Renal effects of uranium in drinking water. Environ Health Perspect 110, 337–342.
dc.relationKurttio, P., Komulainen, H., Leino, A., Salonen, L., Auvinen, A., Saha, H., 2005. Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113, 68–72
dc.relationLandrigan, P., J., 2016. Air pollution and health. The Lancet 2, 1–5.
dc.relationLaney, A.S., Weissman, D.N., 2014. Respiratory diseases caused by coal mine dust. J Occup Environ Med 56 Suppl 10, S18–22.
dc.relationLecomte, A., Cathelineau, M., Deloule, E., Brouand, M., Peiffert, C., LoukolaRuskeeniemi, K., Pohjolainen, E., Lahtinen, H., 2014. Uraniferous bitumen nodules in the Talvivaara Ni–Zn–Cu–Co deposit (Finland): influence of metamorphism on uranium mineralization in black shales. Miner. Deposita, 49, 513–533.
dc.relationLeón-Mejía, G., Espitia-Pérez, L., Hoyos-Giraldo, L.S., Da Silva, J., Hartmann, A., Henriques, J.A., Quintana, M., 2011. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ 409, 686–691.
dc.relationLeon-Mejia, G., Machado, M.N., Okuro, R.T., Silva, L.F.O., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci Total Environ 625, 589-599.
dc.relationLeon-Mejia, G., Quintana, M., Debastiani, R., Dias, J., Espitia-Perez, L., Hartmann, A., Henriques, J.A., Da Silva, J., 2014. Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol Environ Saf 107, 133–139.
dc.relationLewis, J., Hoover, J., MacKenzie, D., 2017. Mining and Environmental Health Disparities in Native American Communities. Curr Environ Health Rep 4, 130–141
dc.relationLin, J., Pan, D., Davis, S.J., Zhang, Q., He, K., Wang, C., Streets, D.G., Wuebbles, D.J., Guan, D., 2014. China's international trade and air pollution in the United States. Proc Natl Acad Sci USA 111, 1736–1741.
dc.relationLiu, B., Peng, T., Sun, H., 2017. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings. Environ. Sci. Pollut. Res., 24, 1–12.
dc.relationLiu, X., Li, Q., Zhang, Y., Yang, Y., Xu, B. and Jiang, T. 2019 Formation Process of the Passivating Products from Arsenopyrite Bioleaching by Acidithiobacillus ferrooxidans in 9K Culture Medium. Metals 9, 1320.
dc.relationLiu, Y., Gupta, R., Sharma, A., Wall, T., Butcher, A., Millier, G., Gottlieb, P., French, D., 2005. Mineral matter–organic matter association characterisation by QEMSCAN and applications in coal utilisation. Fuel 84, 1259–1267
dc.relationLütke, S.F., Oliveira, M.L.S., Silva, L.F.O., Cadaval, T.R.S., Dotto, G.L., 2020. Nanominerals Assemblages and Hazardous Elements Assessment in Phosphogypsum from an Abandoned Phosphate Fertilizer Industry. Chemosphere 256, 127138.
dc.relationMa, M., Wang, R., Xu, L., Xu, M., Liu, S., 2020. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environ Int 145, 106107.
dc.relationMadejová, J., 2003. Review: FTIR techniques in clay mineral studies. Vib. Spectrosc., 31, 1–10.
dc.relationMajumder, E.L.W., Wall, J.D., 2017. Bio-transformations of uranium: Chemical or biological processes? Open J. Inorg. Chem. 7, 28–60.
dc.relationMäkinen, J., Wendling, L., Lavonen, T., Kinnunen, P., 2019. Sequential bioleaching of phosphorus and uranium. Minerals 9, 331.
dc.relationManisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E., 2020. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health 8, 14.
dc.relationMartin, A., Hassan-Loni, Y., Fichtner, A., Stumpf, T., Montavon, G., 2020. An integrated approach combining soil profile, records and tree ring analysis to identify the origin of environmental contamination in a former uranium mine (Rophin, France). Science of the Total Environment 747,141295
dc.relationMartinello, K., Oliveira, M., Molossi, F., Ramos, C., Teixeira, E., Kautzmann, R., Silva, L.F., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Science of the total environment 470, 444–452
dc.relationMcDaniel, D.K., Ringel-Scaia, V.M., Morrison, H.A., Coutermarsh-Ott, S., Council-Troche, M., Angle, J.W., Perry, J.B., Davis, G., Leng, W., Minarchick, V., Yang, Y., Chen, B., Reece, S.W., Brown, D.A., Cecere, T.E., Brown, J.M., Gowdy, K.M., Hochella, M.F. Jr., Allen, I.C., 2019. Pulmonary exposure to Magnéli phase titanium suboxides results in significant macrophage abnormalities and decreased lung function. Frontiers in Immunology 10, 2714.
dc.relationMcGill, B. D., Marlatt, J.L., Matthews, R.B., Sopuck, V.J., Homeniuk, L.A. and Hubregtse, J.J., 1993. The P2 North Uranium deposit, Saskatchewan, Canada. Exploration Mining Geology 2, 321–331.
dc.relationMechi, A.S., D.J, 2010. The environmental Impact of Mining in the state of são Paulo. estudos avançados 24, 209–220.
dc.relationMohanty, B., P., Mahananda, M., R., 2015. Reproductive Health Hazards of Coal mine male Workers in Lakhanpur Open cast mines. International Journal of Biomedical Research 6.
dc.relationMoreno, T., Trechera, P., Querol, X., Wrana, A., Williamson, B. 2019. Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology 203, 52–59.
dc.relationMudd, G.M., 2009. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future. Research Report No. RR5. Department of Civil Engineering, Monash University and Mineral Policy Institute.
dc.relationMunawer, M.E., 2018. Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining 17, 87–96.
dc.relationMurakami, T., Sato, T., Ohnuki, T., Isobe, H., 2005. Field evidence for uranium nanocrystallization and its implications for uranium transport. Chemical Geology 221, 117–126.
dc.relationNancucheo, I., Johnson, D.B., Lopes, M., Oliveira, G., 2017. Reductive dissolution of a lateritic ore containing rare earth elements (REE) using Acidithiobacillus species. Solid State Phenom., 262, 299–302.
dc.relationNesterenko, A.B., Nesterenko, V.B., Yablokov, A.V., 2009. Chapter II. Consequences of the Chernobyl Catastrophe for Public Health. 1181, 31–220.
dc.relationNeves, M. O., Abreu, M. M., Figueiredo, V., 2012. Environmental Geochemistry and Health volume 34, 181–189.
dc.relationNeves, M.O., Abreu, M.M., Figueiredo, V., 2012. Uranium in vegetable foodstuffs: should residents near the Cunha Baixa uranium mine site (Central Northern Portugal) be concerned? Environ Geochem Health 34, 181–189.
dc.relationNordin, A.P., Da Silva, J., De Souza, C., Niekraszewicz, L.A.B., Dias, J.F., Da Boit, K., Oliveira, M.L.S., Grivicich, I., Garcia, A.L., Silva, L.F., Da Silva, F.R., 2018. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. Journal of Hazardous Materials, 346, 263–272.
dc.relationOikonomopoulos I.K., Perraki M., Tougiannidid N., Perraki T., Kasper H.U., Gurk M. 2015. Clays from Neogene Achlada lignite deposits in Florina basin (Western Macedonia, N. Greece): a prospective resource for the ceramics industry Appl. Clay Sci. 103, 1–9.
dc.relationO'Keefe, J.M.K., Bechtel, A., Christianis, K., Dai, S., DiMichele, W.A., Eble, C.F., Esterle, J.S., Mastalerz, M., Raymond, A.L., Valentim, B.V., Wagner, N.J., Ward, C.R., Hower, J.C., 2013. On the fundamental difference between coal rank and coal type. Int. J. Coal Geol. 118, 58– 87.
dc.relationOliveira, M. L. S., Pinto, D., Tutikian, B.F., Da Boit, K., Saikia, B.K., Silva, L.F.O., 2019. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mining industry. Journal of Cleaner Production 215, 1140–1148.
dc.relationOliveira, M. L.S., Ward, C.R., Izquierdo, M., Sampaio, C.H., De Brum, I.A.S., Kautzmann, R.M., Sabedot, S., Querol, X., Silva, L.F.O., 2012a. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. Science of the Total Environment 430, 34–47.
dc.relationOliveira, M.L., Da Boit, K., Schneider, I., Teixeira, E., Crissien T., Silva, L.F., 2018. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. Journal of Cleaner Production 188, 662-669.
dc.relationOliveira, M.L., Marostega, F., Taffarel, S.R., Saikia, B.K., Waanders, F.B., DaBoit, K., Baruah, B.P., Silva, L.F., 2014. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards. Sci Total Environ 468, 1128–1137.
dc.relationOliveira, M.L.S., Waanders, F. Silva, L., Jasper, A., Mchabe, D., Hatch, R., Hower, J., Sampaio, C. H., 2011. A multi-analytical approach to understand the chemistry of fe-minerals in feed coals and ashes. Coal combustion and gasification products 3, 51–62.
dc.relationOliveira, M.L.S., Ward, Colin R., French, D., Hower, J. C., Querol, X., Silva, L.F.O., 2012b. Mineralogy and leaching characteristics of beneficiated coal products from santa catarina, brazil. International Journal of Coal Geology 94, 314–325.
dc.relationOrem, W.H., Finkelman, R.B.J.T.o.G., 2003. Coal Formation and Geochemistry. Treatise on Geochemistry 7, 407.
dc.relationOthmane, G., Allard, T., Menguy, N., Morin, G., Esteve, I., Fayek, M., and Calas, G., 2013. Evidence for nanocrystals of vorlanite, a rare uranate mineral, in the Nopal I low-temperature uranium deposit (Sierra Peña Blanca, Mexico). American Mineralogist 98, 518–521.
dc.relationPacheco, S.W.A., Quintão L.D., Fabris J.D., 2014. Mössbauer analysis of coal coke samples from Samacá, Boyacá, Colombia. Hyperfine Interact. 224, 271–275.
dc.relationPermana, A., Ward, C.R., Li, Z., Gurba, L.W., 2013. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 116, 185–207.
dc.relationPerret, J.L., Plush, B., Lachapelle, P., Hinks, T.S., Walter, C., Clarke, P., Irving, L., Brady, P., Dharmage, S.C., Stewart, A., 2017. Coal mine dust lung disease in the modern era. Respirology 22, 662–670.
dc.relationPidchenko, I., Bauters, S., Sinenko, I., Baker, R.J., Kvashnina, K.O., 2020. A multi-technique study of altered granitic rock from the Krunkelbach Valley uranium deposit, Southern Germany. RSC Advances 10, 25529–25539
dc.relationQuispe, D., Pérez-López, R., Silva, L.F., Nieto, J., 2012. Changes in mobility of hazardous elements during coal combustion in santa catarina power plant (Brazil). Fuel, 94, 495–503.
dc.relationRamos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M., 2017. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production 142, 2700–2706.
dc.relationRen, B., Zhou, Y., Hursthouse, A.S., Deng, R., 2017. Research on the characteristics and mechanism of the cumulative release of antimony from an antimony smelting slag stacking area under rainfall leaching. Anal, J., Methods Chem.
dc.relationRibeiro, J., Daboit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013. Extensive FE-sSEM/EDS, HR-TEM/EDS and TOF-SIMS studies of micron- to nano-particles in anthracite fly ash. Science of the total environment 452, 98-107.
dc.relationRibeiro, J., Flores, D., Ward, C., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from portugal. Science of the total environment 408, 6032-6041.
dc.relationRiley, K.W., French, D.H., Farrell, O.P., Wood, R.A., Huggins, F.E., 2012. Modes of occurrence of trace and minor elements in some Australian coals. Int. J. Coal Geol. 94, 214-224.
dc.relationRobertson, J., Hendry, M.J., Essilfie-Dughan, J., Chen, J.J., 2016. Precipitation of aluminum and magnesium secondary minerals from uranium mill raffinate (pH 1.0-10.5) and their controls on aqueous contaminants. Applied Geochemistry 64, 30–42.
dc.relationRodriguez-Iruretagoiena, A., De Vallejuelo, S., De Diego, A., De Leão, F., De Medeiros, D., Oliveira, M., Taffarel, S., Arana, G., Madariaga, J., Silva, L.F., 2016. The mobilization of hazardous elements after a tropical storm event in a polluted estuary. Science of the Total Environment 565, 721– 729.
dc.relationRovira, J.S., Ma, N.M, Domingo, J.L., 2018. Contamination by Coal Dust in the Neighborhood of the Tarragona Harbor (Catalonia, Spain): A Preliminary Study. The Open Atmospheric Science Journal 12, 14–20.
dc.relationSadowski, Z., Sklodowska, A., 2016. UO2 nanoparticles synthesis from leaching solutions on the hematite support. Annales Universitatis Maria CurieSklowski A Lublin-Polonia 10.17951/aa.2016.71.1.79 VOL. LXXI, 1 SECTIO AA
dc.relationSahu, H.B., Prakash, N., Jayanthu, S., 2015. Underground Mining for Meeting Environmental Concerns – A Strategic Approach for Sustainable Mining in Future. Procedia Earth and Planetary Science 11, 232–241.
dc.relationSaikia, B.K., Saikia, J., Rabha, S., Silva, L.F., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geoscience Frontiers, 9, 863–875.
dc.relationSaikia, M., Tonkeswar, D., Nikalabh, D., Fan, X., Silva, L.F.O., Saikia, B.K., 2020. Formation of Carbon Quantum Dots and Graphene Nanosheets from Different Abundant Carbonaceous Materials. Diamond and Related Materials 106, 107813
dc.relationSánchez-Peña, N.E., Narváez-Semanate, J. L., Pabón-Patiño, D., FernándezMera, J. E., Oliveira, M. L., Da Boit, K., Tutikian B., Crissien, T., Pinto, D., Serrano, I., Ayala, C., Duarte, A., Ruiz, J., Silva, L.F., 2018. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 191, 1048–1055.
dc.relationSanchís, J., Boovi', D., Al-Harbi, N.A., Silva, L.F., Farré, M., Barceló, D., 2013. Quantitative trace analysis of fullerenes in river sediment from spain and soils from saudi arabia. Analytical and Bioanalytical Chemistry 405, 5915–5923
dc.relationSanchís, J., Oliveira, L.F., De Leão, F., Farré, M., Barceló, D., 2015. Liquid chromatography-atmospheric pressure photoionization-orbitrap analysis of fullerene aggregates on surface soils and river sediments from santa catarina (brazil). Science of the Total Environment 505, 172–179.
dc.relationSavabieasfahani, M., Ahamadani, B.F., Damghani, M.A., 2020. Living near an active U.S. military base in Iraq is associated with significantly higher hair thorium and increased likelihood of congenital anomalies in infants and children. Environ Pollut 256, 113070.
dc.relationSchindler, M., Durocher, J., Kotzer, T.K., Hawthorne, F.C., 2012. Uraniumbearing phases in mine tailings of Northern Canada: Products of the interaction between leachate/raffinate and tailings material. Applied Geochemistry 29, 151–161
dc.relationSchindler, M., Fayek, M and Hawthorne, F.C., 2010. Uranium in opaline rockcoatings at the Uranium Ore Deposit Nopal 1, Pena Blanca, Mexico: Indications for the uptake and retardation of radionuclides. Geochimica et Cosmochimica Acta 74, 187–202.
dc.relationSchindler, M., Legrand, C.A., Hochella, M.F., 2015. Alteration, adsorption and nucleation processes on clay-water interfaces: Mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale. Geochimica et Cosmochimica Acta 153, 15–36
dc.relationSchindler, M., Lussier, A.J. Bellrose, J., Rouvimov, S., Burns, P.C., Kyser, K. 2017. A nano-mineralogical study of samples from the Matoush Uranium ore deposit: Further evidence for the mobilization and coalescence of uraninite nanoparticles. American Mineralogist 102, 1776–1787.
dc.relationSehn, J., De Leão, F., Da Boit, K., Oliveira M., Hidalgo G., Sampaio C., Silva, L.F., 2016. Nanomineralogy in the real world: a perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 147, 439–443
dc.relationShelley, R., Kim, N.S., Parsons, P.J., Lee, B.K., Agnew, J., Jaar, B.G., Steuerwald, A.J., Matanoski, G., Fadrowski, J., Schwartz, B.S., Todd, A.C., Simon, D., Weaver, V.M., 2014. Uranium associations with kidney outcomes vary by urine concentration adjustment method. J Expo Sci Environ Epidemiol 24, 58–64
dc.relationShi, R., Meacham, S., Davis, G.C., You, W., Sun, Y., Goessl, C., 2019. Factors influencing high respiratory mortality in coal-mining counties: a repeated cross-sectional study. BMC Public Health 19, 1484.
dc.relationSilva, L.F., Da Boit, K., Oliveira, M., Hower, J., 2010b. Fullerenes and metallofullerenes in coal-fired stoker fly ash. Coal combustion and gasification products 2, 1–11.
dc.relationSilva, L.F., Izquierdo, M., Querol, X., Finkelman, R.B., Oliveira, M.L., Wollenschlager, M., Towler, M., Pérez-López, R., Macias, F., 2011a. Leaching of potential hazardous elements of coal cleaning rejects. Environ Monit Assess 175, 109–126.
dc.relationSilva, L.F., O, Ward, C., R, Hower, J., C, Izquierdo, M., Waanders, F., Oliveira, M., L,S, Li, Z., Hatch, R., S, Querol, X., 2010c. Mineralogy and Leaching Characteristics of Coal Ash from a Major Brazilian Power Plant. Coal Combustion and Gasification Products
dc.relationSilva, L.F., Querol, X., Da Boit, K., Fdez-Ortiz De Vallejuelo S., Madariaga, J.M., 2011a. Brazilian coal mining residues and sulphide oxidation by fenton s reaction: an accelerated weathering procedure to evaluate possible environmental impact. Journal of hazardous materials, 186, 516–525.
dc.relationSilva, L.F., Wollenschlager, M., Oliveira, M., 2011b. A preliminary study of coal mining drainage and environmental health in the santa catarina region, brazil. Environmental geochemistry and health, 33, 55-65.
dc.relationSilva, L.F.O., Crissien, T.J., Milanes, C., Sampaio, C.H., 2020c. A ThreeDimensional Nanoscale Study in Selected Coal Mine Drainage. Chemosphere 248, 125946.
dc.relationSilva, L.F.O., Crissien, T.J., Schneider, I.L., Blanco, É.P., Sampaio, C.H., 2020d. Nanometric particles of high economic value in coal fire region: Opportunities for social improvement. Journal of Cleaner Production 256, 120480.
dc.relationSilva, L.F.O., Crissien, T.J., Tutikian, B. F., Sampaio, C.H., 2020b. Rare Earth Elements and carbon nanotubes in coal mine around spontaneous combustions. Journal of Cleaner Production 253, 120068.
dc.relationSilva, L.F.O., da Boit, K., 2011. Nanominerals and Nanoparticles in Feed Coal and Bottom Ash: Implications for Human Health Effects. Environ Monit Assess 174, 187–197
dc.relationSilva, L.F.O., Hower, J., Izquierdo, M., Querol, X., 2010a. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Science of the Total Environment 408, 5117–5122.
dc.relationSilva, L.F.O., Jasper, A., Andrade, M.L., Sampaio, C.H., Dai, S., Li, X., Li, T., Chen, W., Wang, X., Liu, H., Zhao, L., Hopps, S.G., Jewell, R.F., Hower, J.C., 2012a. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in chinese anthracitederived fly ash. Science of the Total Environment 419, 250–264.
dc.relationSilva, L.F.O., Oliveira M.L.S., Philippi, V., Serra, C., Dai, S., Xue, W., Chen, W., O'keefe, J.M.K., Romanek, C.S., Hopps, S.G., Hower, J.C., 2012b. Geochemistry of carbon nanotube assemblages in coal fire soot, ruth mullins fire, perry county, kentucky. International journal of Coal Geology 94, 206–213.
dc.relationSilva, L.F.O., Oliveira, M.L.S., da Boit, K.M., Finkelman, R.B., 2009. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environ Geochem Health 31, 475– 485.
dc.relationSilva, L.F.O., Oliveira, M.L.S., Sampaio, C.H., De Brum, I.A.S., Hower, J.C., 2013. Vanadium and nickel speciation in pulverized coal and petroleum coke co-combustion. Energy & Fuels 27, 1194–1203.
dc.relationSilva, Luis F.O., Crissien, T. J., Sampaio, C. H., Hower, J. C., Dai, S., 2020a. Occurrence of carbon nanotubes and implication for the siting of elements in selected anthracites. Fuel 263, 116740.
dc.relationSouidi, M., Gueguen, Y., Linard, C., Dudoignon, N., Grison, S., Baudelin, C., Marquette, C., Gourmelon, P., Aigueperse, J., Dublineau, I., 2005. In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat. Toxicology 214, 113–122.
dc.relationStanton, R.W., Finkelman, R.B., 1979. Petrographic analysis of bituminous coal: optical and SEM identification of constituents. Scan. Electron Microsc., 1, 465–471.
dc.relationSumant, A., Lichtner, P.C., Ali., A.S. González-Pinzó, R., Blake, J.M., Cerrato, J.M., 2017. Reactive transport of U and V from abandoned uranium mine wastes. Environmental Science and Technology 51, 12385-12393
dc.relationSuzuki, Y., Kelly, S.D., Kemner, K.M., Banfield, J.F., 2002. Nanometre-size products of uranium bioreduction. Nature 419, 134.
dc.relationSuzuki, Y., Mukai, H., Ishimura, T., Yokoyama, T.D., Sakata, S., Hirata, T., Iwatsuki, T., and Mizuno, T., 2016. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer. Scientific Reports 6, 22701.
dc.relationTang, R.K., Wang, L., Orme, J., 2004. Dissolution at the nanoscale: Selfpreservation of biominerals. Angew Chem Int Ed 43, 2697–2701.
dc.relationTaylor, G.H., Teichmuller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology Gebruder Borntraeger, Berlin, (704 pp.)
dc.relationTiwary, R.K., 2001. Environmental Impact of Coal Mining on Water Regime and Its Management. Water, Air, and Soil Pollution 132, 185–199.
dc.relationTrechera, P., Moreno, T., Córdoba, P., Kelly, F., Querol, X. 2020. Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. Journal of Hazardous Materials 399, 15.
dc.relationUlrich, K-U, Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O., Bernier-Latmani, R., Giammar, D.E., 2008. Dissolution of biogenic and synthetic UO2 under varied reducing conditions. Environmental Science & Technology 42, 5600–5606
dc.relationUtsunomiya, S., Jensen, K., Keller, G.J., Ewing, R.C., 2002. Uraninite and Fullerene in Atmospheric Particulates 36, Environmental Science & Technology 9, 4943–4947.
dc.relationWaanders, F.B., Mulaba-Bafubiandi, A.F., Lodya, L., 2014. The South African industry use of Mössbauer spectroscopy to solve operational problems. Hyperfine Interact. 226, 721–735.
dc.relationWade-Gueye, N.M., Delissen, O., Gourmelon, P., Aigueperse, J., Dublineau, I., Souidi, M., 2012. Chronic exposure to natural uranium via drinking water affects bone in growing rats. Biochim Biophys Acta 1820, 1121–1127.
dc.relationWang, J.K., Radovan, G., Kuang, S., Barbosa. C., Brito, H.M.J., Carbone, J., 2016. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature 539, 416–419.
dc.relationWang, Q., Li, L., Long, C.-L., Yang, Z.-G., Zhou, Y., 2020. Detection of C60 in environmental water using dispersive liquid–liquid micro-extraction followed by high-performance liquid chromatography. Environmental Technology (United Kingdom) 41, 1015–1022.
dc.relationWang, S., Ran, Y., Lu, B., Li, J., Kuang, H., Gong, L., Hao, Y., 2020. A Review of Uranium-Induced Reproductive Toxicity. Biological Trace Element Research 196, 204–213.
dc.relationWang, X., Sun, Z., Liu, Y., Min, X., Guo, Y., Li, P., Zheng, Z., 2019. Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresour. Technol. 281, 66–71.
dc.relationWang, X.S., 2014. Mineralogical and chemical composition of magnetic fly ash fraction. Environ. Earth Sci. 71, 1673–1681.
dc.relationWang, Y., Frutschi, M., Suvorova, E., Phrommavanh, V., Descostes, M., Osman, A.A.A. Geipel, G., Bernier-Latmani1, R., 2013. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nature Communications 4, 2942.
dc.relationWard, C., 2016. Analysis, origin and significance of mineral matter in coal: An updated review. International Journal of Coal Geology 165,1–27.
dc.relationWard, C.R., 2013. Coal geology. Elias S. (Ed.), Reference Modules in Earth Systems and Environmental Sciences, 30 pp.
dc.relationWard, C.R., Matulis, C.E., Taylor, J.C., Dale, L.S., 2001. Quantification of mineral matter in Argonne Premium Coals using interactive Rietveldbased X-ray diffraction. Int. J. Coal Geol. 46, 67–82.
dc.relationWarlo, M., Wanhainen, C., Martinsson, O., Karlsson, P., 2020. Mineralogy and character of the Liikavaara Östra Cu-(W-Au) deposit, northern Sweden. GFF 142(3), pp. 169-189.
dc.relationWHO, 2005. Guidelines for drinking-water quality, 4th edition. https://www.who.int/publications/i/item/9789241549950 4, 564.
dc.relationWilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, M., Cutruneo, C., Taffarel, S., Silva, L.F., Hopps, S., Thomas, G., Hower, J., 2015. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale. Energy & Fuels, 29 7168–7177.
dc.relationWilliamson, A.L., Schindler, M. and Spiers, G.A., 2017. Retention of Uranium, Throrium and Rare Earth Elements in authigenic phases during biogeochemical leaching experiments. Hydrometallurgy 177, 9–20.
dc.relationYablokov, A.V., Nesterenko, V.B., Nesterenko, A.V., 2009. Consequences of the Chernobyl catastrophe for public health and the environment 23 years later. Ann N Y Acad Sci 1181, 318–326
dc.relationYang, Y., Chen, B., Hower, J., Schindler, M., Winkler, C., Brandt, J., Di Giulio, R., Liu, M., Fu, Y., Zhang, L., Priya, S., Hochella, M.F. Jr., 2017. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal burning. Nature Communications. For immediate open access, go to http://dx.doi.org/10.1038/s41467-017- 00276-2.
dc.relationYang, Y., Ram, R., Pownceby, M.I., Chen, M. Bioleaching of synthetic uranium minerals: uraninite, pitchblende, coffinite, brannerite and betafite. Proceedings of the 23rd International Biohydrometallurgy Symposium 20-23 October, 2019.
dc.relationYang, Z., Li, Y., Ning, Y., Yang, S., Tang, Y., Zhang, Y., Wang, X., 2018. Effects of oxidant and particle size on uranium leaching from coal ash. J. Radioanal. Nucl. Chem. 317, 801–810
dc.relationYapar, K., Cavusoglu, K., Oruc, E., Yalcin, E., 2010. Protective role of Ginkgo biloba against hepatotoxicity and nephrotoxicity in uranium-treated mice. J Med Food 13, 179–188.
dc.relationYin, M., Tsang, D.C.W., Sun, J., Xiao, T., Chen, D., 2020. Critical insight and indication on particle size effects towards uranium release from uranium mill tailings: Geochemical and mineralogical aspects. Chemosphere 250, 126315.
dc.relationYoreo, J.J., Pupa, U.P.A., Nico, G., 2015. Crystallization by particle attachment. Science, 349, 6247.
dc.relationZamora, M.L., Zielinski, J.M., Moodie, G.B., Falcomer, R.A., Hunt, W.C., Capello, K., 2009. Uranium in drinking water: renal effects of long-term ingestion by an aboriginal community. Arch Environ Occup Health 64, 228–241.
dc.relationZhang X., 2020. Crystallization via Nonclassical Pathways Volume 1: Nucleation, Assembly, Observation & Application. American Chemical Society, DOI: 10.1021/bk-2020-1358.
dc.relationZhang, W., Liu, W., Bao, S., Liu, H., Zhang, Y., Zhang, B., Zhou, A., Chen, J., Hao, K., Xia, W., Li, Y., Sheng, X., Xu, S., 2020. Association of adverse birth outcomes with prenatal uranium exposure: A population-based cohort study. Environ Int 135, 105391.
dc.relationZhou, Y., Ren, B., Hursthouse, A.S., Zhou, S., 2019. Antimony ore tailings: heavy metals, chemical speciation, and leaching characteristics. Pol. J. Environ. Stud., 28, 485–495.
dc.relationZychowski, K.E., Kodali, V., Harmon, M., Tyler, C.R., Sanchez, B., Ordonez Suarez, Y., Herbert, G., Wheeler, A., Avasarala, S., Cerrato, J.M., Kunda, N.K., Muttil, P., Shuey, C., Brearley, A., Ali, A.M., Lin, Y., Shoeb, M., Erdely, A., Campen, M.J., 2018. Respirable Uranyl-VanadateContaining Particulate Matter Derived From a Legacy Uranium Mine Site Exhibits Potentiated Cardiopulmonary Toxicity. Toxicol Sci 164, 101– 114.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceGondwana Research
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S1342937X21000149#!
dc.subjectNanoparticles and nanominerals
dc.subjectEnvironmental impacts
dc.subjectEnvironmental contaminants
dc.subjectMining activities
dc.subjectHuman health
dc.titleNanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: A review and perspective
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución