dc.creator | Silva Oliveira, Luis Felipe | |
dc.creator | Santosh, M | |
dc.creator | Schindler, Michael | |
dc.creator | Gasparotto, Juciano | |
dc.creator | Dotto, Guilherme Luiz | |
dc.creator | S. Oliveira, Marcos L. | |
dc.creator | Hochella, Jr. | |
dc.date | 2021-01-18T17:40:21Z | |
dc.date | 2021-01-18T17:40:21Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T20:07:27Z | |
dc.date.available | 2023-10-03T20:07:27Z | |
dc.identifier | https://hdl.handle.net/11323/7709 | |
dc.identifier | https://doi.org/10.1016/j.gr.2020.12.026 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174389 | |
dc.description | Nanoscience and technology have enabled better insights into the environmental and health impacts arising from the mining, production and use of fossil and mineral fuels. Here we provide an overview of the nanoscience-based applications and discoveries concerning coal and mineral fuel (i.e., uranium-containing minerals) mining, refining/production, use, and disposal of wastes. These processes result in massive nanoparticle release and secondary nanoparticle generation which have highly significant environmental implications and human health consequences on local, regional, and even global levels. Until recently, very little was known about nanoparticle fractions. Recent advancements and sophistications enable us to detect, collect and study these materials which are roughly 1 nm (0.001 μm) up to several tens of nanometers in size. These materials are known to behave differently (chemically, electrically, and mechanically), relative to their macroscopic equivalents. This is what makes nanoscience fascinating and difficult to predict, underscoring the importance of this emerging new field. For example, nanoparticles associated with coal and mineral fuel influence the release, uptake, and transportation of hazardous elements associated with mining, processing, and waste storage in the surrounding areas. This includes long distance transport down streams, rivers, and eventually to oceans such as from coal and uranium mine drainages. In terms of human health, in all phases of mining, production/refining, use, and waste disposal, the associated nanoparticles can be acquired through oral ingestion, inhalation, and dermal absorption. Inhalation has been shown to be particularly damaging, where lung, heart, kidney, and brain diseases are prevalent.
Relative to all other fields of science and engineering associated with coal and mineral fuel mining, production, use, and clean-up efforts, nanoscience, although a much newer field then the rest by comparison, is still greatly under-represented and under-utilized. There is also a continuing gap between what we so far know about the behavior of nanoparticles, and what remains to be discovered. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | Abdelouas, A., 2006. Uranium Mill Tailings: Geochemistry, Mineralogy and
Environmental Impact. Elements 2, 335–341. | |
dc.relation | Anke, M., Seeber, O., Müller, R., Schäfer, U., Zerull, J., 2009. Uranium transfer
in the food chain from soil to plants, animals and man. Geochemistry 69,
75–90. | |
dc.relation | Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., Tebo, B.M., 2008. Biogenic
Uraninite Nanoparticles and Their Importance for Uranium Remediation.
Elements 4, 407–412. | |
dc.relation | Basak, B.B., Sarkar, B., Sanderson, P., Naidu, R., 2018. Waste mineral powder
supplies plant available potassium: Evaluation of chemical and biological
interventions. Journal of Geochemical Exploration 186, 114–120. | |
dc.relation | Bernhoft, R.A., 2012. Mercury toxicity and treatment: a review of the literature. J
Environ Public Health, 460508. | |
dc.relation | Bernier-Latmani, R., Veeramani, H. Vecchia, E.D., Junier P., Lexama-Pacheco,
J.S., Suvorova, E.I., Sharp, J.O., Wigginton, N.S., Bargar, J.R., 2010.
Non-uraninite Products of Microbial U(VI) Reduction Environmental
Science &Technology 44, 9456–9462. | |
dc.relation | Bloom, M.S., Buck Louis, G.M., Sundaram, R., Maisog, J.M., Steuerwald, A.J.,
Parsons, P.J., 2015. Birth outcomes and background exposures to select
elements, the Longitudinal Investigation of Fertility and the Environment
(LIFE). Environ Res 138, 118–129. | |
dc.relation | Briner, W., Murray, J., 2005. Effects of short-term and long-term depleted
uranium exposure on open-field behavior and brain lipid oxidation in rats.
Neurotoxicol Teratol 27, 135–144. | |
dc.relation | Brugge, D., de Lemos, J.L., Oldmixon, B., 2005. Exposure pathways and health
effects associated with chemical and radiological toxicity of natural
uranium: a review. Rev Environ Health 20, 177–193. | |
dc.relation | Calderon-Garciduenas, L., Gonzalez-Maciel, A., Reynoso-Robles, R.,
Hammond, J., Kulesza, R., Lachmann, I., Torres-Jardon, R., Mukherjee,
P.S., Maher, B.A., 2020. Quadruple abnormal protein aggregates in
brainstem pathology and exogenous metal-rich magnetic nanoparticles.
The substantia nigrae is a very early target in young urbanites and the
gastrointestinal tract likely a key brainstem portal. Environ Res, 110139. | |
dc.relation | Caraballo, M.A., Michel, F.M., Hochella M.F., Jr., 2015. The rapid expansion of
environmental mineralogy in unconventional ways: Beyond the accepted
definition of a mineral, the latest technology, and using nature as our
guide. American Mineralogist, 100, 14–25. | |
dc.relation | Cariccio, V.L., Sama, A., Bramanti, P., Mazzon, E., 2019. Mercury Involvement
in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace
Elem Res 187, 341–356. | |
dc.relation | Cerqueira, B., Vega, F. A., Silva, L. F.O., Andrade, L., 2012. Effects of
vegetation on chemical and mineralogical characteristics of soils
developed on a decantation bank from a copper mine. Science of the
total environment 421, 220–229 | |
dc.relation | Cerqueira, B., Vega, F.A., Serra, C., Silva, L.F.O., Andrade, M.L., 2011. Time
of flight secondary ion mass spectrometry and high-resolution
transmission electron microscopy/energy dispersive spectroscopy: a
preliminary study of the distribution of cu2+ and cu2+/pb2+ on a bt
horizon surfaces. Journal of hazardous materials, 422–431. | |
dc.relation | Civeira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R.,
Teixeira, E.C., Silva, L.F., 2016. Nano-mineralogy of suspended
sediment during the beginning of coal rejects spill. Chemosphere 145,
142–147. | |
dc.relation | Cleveland, D., Hinck, J.E., Lankton, J.S., 2021. Elemental and radionuclide
exposures and uptakes by small rodents, invertebrates, and vegetation
at active and post-production uranium mines in the Grand Canyon
watershed. Chemosphere 263, 127908. | |
dc.relation | Cortes-Ramirez, J., Naish, S., Sly, P.D., Jagals, P., 2018. Mortality and
morbidity in populations in the vicinity of coal mining: a systematic
review. BMC Public Health 18, 721. | |
dc.relation | Craft, E., Abu-Qare, A., Flaherty, M., Garofolo, M., Rincavage, H., Abou-Donia,
M., 2004. Depleted and natural uranium: chemistry and toxicological
effects. J Toxicol Environ Health B Crit Rev 7, 297–317. | |
dc.relation | Cutruneo, C., Oliveira, M.L.S., Ward, C., Hower, J., De Brum, I., Sampaio, C.,
Kautzmann, R., Taffarel, S., Teixeira, E., Silva, L.F., 2014. A
mineralogical and geochemical study of three brazilian coal cleaning
rejects: demonstration of electron beam applications. International
Journal of Coal Geology 130, 33–52. | |
dc.relation | Dai, S., Wang, P., Ward, C.R., Tang, Y., Song, X., Jiang, J., Hower, J.C., Li, T.,
Seredin, V.V., Wagner, N.J., Jiang, Y., Wang, X., Liu, J., 2015. Elemental
and mineralogical anomalies in the coal-hosted Ge ore deposit of
Lincang, Yunnan, southwestern China: key role of N2–CO2-mixed
hydrothermal solutions. Int. J. Coal Geol. 152, 19–46. | |
dc.relation | Dashner-Titus, E.J., Hoover, J., Li, L., Lee, J.H., Du, R., Liu, K.J., Traber, M.G.,
Ho, E., Lewis, J., Hudson, L.G., 2018. Metal exposure and oxidative
stress markers in pregnant Navajo Birth Cohort Study participants. Free
Radic Biol Med 124, 484–492. | |
dc.relation | Dashner-Titus, E.J., Schilz, J.R., Simmons, K.A., Duncan, T.R., Alvarez, S.C.,
Hudson, L.G., 2020. Differential response of human T-lymphocytes to
arsenic and uranium. Toxicol Lett 333, 269–278. | |
dc.relation | Déjeant, A., Galoisy, L., Royd, R., Calas, G., Boekhout, F., Phrommavanh V.,
Descostes, M., 2016. Evolution of uranium distribution and speciation in
mill tailings, COMINAK Mine, Niger. Science of the Total Environment
545, 340–352. | |
dc.relation | Dewar, D., Harvey, i., Vakil, C., 2013. Uranium mining and health. Can Fam
Physician, 469–471. | |
dc.relation | Diehl S.F., Goldhaber M.B., Koenig A.E., Lowers H.A., Ruppert L.F., 2012.
Distribution of arsenic, selenium, and other trace elements in high pyrite
Appalachian coals: evidence for multiple episodes of pyrite formation. Int.
J. Coal Geol. 94, 238–249 | |
dc.relation | Donbak, L., Rencuzogullari, E., Yavuz, A., Topaktas, M., 2005. The genotoxic
risk of underground coal miners from Turkey. Mutat Res 588, 82–87. | |
dc.relation | Duarte, A.L., DaBoit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva,
L.F.O., 2019. Hazardous elements and amorphous nanoparticles in
historical estuary coal mining area. Geoscience Frontiers 10, 927–939. | |
dc.relation | Dutta, M., Saikia, J., Taffarel, S. R., Waanders, F. B., de Medeiros, D.,
Cutruneo, C. M., Saikia, B. K., 2017. Environmental assessment and
nano-mineralogical characterization of coal, overburden and sediment
from Indian coal mining acid drainage. Geoscience Frontiers. 8, 1285–
1297. | |
dc.relation | Entwistle, J.A., Hursthouse, A.S., Marinho Reis, P.A., Stewart, A.G., 2019.
Metalliferous Mine Dust: Human Health Impacts and the Potential Determinants of Disease in Mining Communities. Current Pollution
Reports 5, 67–83. | |
dc.relation | Epple, M., 2008. From Metal Complexes to Nanominerals : The Formation of
Inorganic Nanoparticles on Fibrils of Transferrin. Angew. Chem. Int. Ed.,
47, 4960–4961. | |
dc.relation | Espitia-Pérez, L., da Silva, J., Espitia-Pérez, P., Brango, H., Salcedo-Arteaga,
S., Hoyos-Giraldo, L.S., de Souza, C.T., Dias, J.F., Agudelo-Castañeda,
D., Valdés Toscano, A., Gómez-Pérez, M., Henriques, J.A.P., 2018.
Cytogenetic instability in populations with residential proximity to open-pit
coal mine in Northern Colombia in relation to PM(10) and PM(2.5) levels.
Ecotoxicol Environ Saf 148, 453-466. | |
dc.relation | Essilfie-Dughan, J., Hendry, M.J., Warner, J. and Kotzer, J., 2012. Microscale
mineralogical characterization of As, Fe, and Ni in uranium mine tailings.
Geochimica et Cosmochimica Acta. 96, 336–352. | |
dc.relation | Finch, R., Murakami, T., 1999. Systematics and Paragenesis of
UraniumMinerals Reviews in Mineralogy and Geochemistry 38, 91–180. | |
dc.relation | Finkelman, R.B., Dai, S., French, D., 2019. The importance of minerals in coal
as the hosts of chemical elements: A review. International Journal of
Coal Geology 212, 103251. | |
dc.relation | Fraund, M., Pham, D., Bonanno, D., Harder, T., Wang, B., Brito, J., De Sá, S.,
Carbonere, S., China, S., Artaxo, P., Martin, S., Pohlker, C., Andreae,
M., Laskin, Al., Gilles, M., Moffet, R., 2017. Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during
GoAmazon2014/15. Atmosphere 8, 173–200. | |
dc.relation | French, D., Ward, C.R., Butcher, A., 2008. QemSCAN for characterisation of
coal and coal utilisation by-products Research Report 93, Co-operative
Research Centre for Coal in Sustainable Development (CCSD),
Brisbane, 103 pp. | |
dc.relation | Gasparotto, J., Chaves, P.R., da Boit Martinello, K., da Rosa-Siva, H.T.,
Bortolin, R.C., Silva, L.F.O., Rabelo, T.K., da Silva, J., da Silva, F.R.,
Nordin, A.P., Soares, K., Borges, M.S., Gelain, D.P., Moreira, J.C.F.,
2018. Obese rats are more vulnerable to inflammation, genotoxicity and
oxidative stress induced by coal dust inhalation than non-obese rats.
Ecotoxicol Environ Saf 165, 44–51. | |
dc.relation | Gasparotto, J., Chaves, P.R., da Boit Martinello, K., Silva, L.F.O., Gelain, D.P.,
Fonseca, J.C.M., 2019. Obesity associated with coal ash inhalation
triggers systemic inflammation and oxidative damage in the
hippocampus of rats. Food Chem Toxicol 133, 110766. | |
dc.relation | Gasparotto, J., Martinello K. B., 2021. Coal as an energy source and its impacts
on human health. Energy Geoscience,
https://doi.org/10.1016/j.engeos.2020.07.003. | |
dc.relation | Gómez, L.P., Ramos, C.G., Oliveira, M.L.S., Silva, L.F.O., 2021. Release
kinetics of multi-nutrients from volcanic rock mining by-products:
Evidences for their use as a soil remineralizer. Journal Cleaner
Production 279, 123668. | |
dc.relation | Gomez, M.A., Hendry, M.J., Koshinsky,J., Essilfie-Dughan, J., Paikaray, S.,
Chen, J., 2013. Mineralogical Controls on Aluminum and Magnesium in
Uranium Mill Tailings: Key Lake, Saskatchewan, Canada. Environmental
& T h gy 47 7883−7891. | |
dc.relation | Gorby, Y.A., Lovley, D.R., 1992. Enzymatic uranium precipitation.
Environmental Science & Technology 26, 205–207. | |
dc.relation | Gredilla, A., Fdez-Ortiz de Vallejuelo, S., Rodriguez-Iruretagoiena, A., Gomez,
L., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva,
L.F.O., 2019. Evidence of mercury sequestration by carbon nanotubes
and nanominerals present in agricultural soils from a coal fired power
plant exhaust. Journal of Hazardous Materials, 378, 120747. | |
dc.relation | Hendryx, M., Zullig, K.J., 2009. Higher coronary heart disease and heart attack
morbidity in Appalachian coal mining regions. Preventive Medicine 49,
355–359. | |
dc.relation | Hendryx, M.A.I.W., Kestrel A., 2013. Increased Risk of Depression for People
Living in Coal Mining Areas of Central Appalachia. Ecopsychology 5,
179–187. | |
dc.relation | Hochella, Jr., M.F. et al. 2008. Nanominerals, Mineral Nanoparticles, and Earth
Systems. Science 319, 1631. | |
dc.relation | Hochella, Jr., M.F. et al. 2019. Natural, incidental, and engineered
nanomaterials and their impacts on the Earth system. Science 363. DOI:
10.1126/science.aau8299 | |
dc.relation | Hochella, M.F., Jr., Kasama, T., Putnis, A., Putnis, C., Moore, J.N., 2005b.
Environmentally important, poorly crystalline Fe/Mn hydrous oxides:
Ferrihydrite and a possibly new vernadite-like mineral from the Clark
Fork River Superfund Complex. American Mineralogist 90, 718–724. | |
dc.relation | Hochella, M.F., Jr., Moore, J.N., Golla, U., and Putnis, A., 1999. A TEM study of
samples from acid mine drainage systems: Metal - mineral association
with implications for transport. Geochimica et Cosmochimica Acta, 63,
3395–3406. | |
dc.relation | Hochella, M.F., Jr., Moore, J.N., Putnis, C., Putnis, A., Kasama, T., Eberl, D.D.,
2005a. Direct observation of heavy metal-mineral association from the
Clark Fork River Superfund Complex: Implications for metal transport
and bioavailability. Geochimica et Cosmochimica Acta 69, 1651–1663. | |
dc.relation | Houpert, P., Frelon, S., Lestaevel, P., Bussy, C., Gourmelon, P., Paquet, F.,
2007. Parental exposure to enriched uranium induced delayed
hyperactivity in rat offspring. Neurotoxicology 28, 108–113. | |
dc.relation | Hower, J.C., Andrews, W.M., Wild, G.D., Eble, C.F., Dulong, F.T., Salter, T.L.,
1994. Quality of the Fire Clay coal bed, southeastern Kentucky. J. Coal
Qual., 13, 13–26 | |
dc.relation | Hower, J.C., O`Keefe, J.M.K., Henke, K.R., Wagner, N.J., Copley, G., Blake,
D.R., Garrison, T., Oliveira, M.L.S., Kautzmann, R.M., Silva, L.F.O.,
2013. Gaseous emissions and sublimates from the Truman shepherd
coal fire, Floyd County, Kentucky: a re-investigation following attempted
mitigation of the fire. International Journal of Coal Geology 116, 63-74. | |
dc.relation | Hund, L., Bedrick, E.J., Miller, C., Huerta, G., Nez, T., Ramone, S., Shuey, C.,
Cajero, M., Lewis, J., 2015. A Bayesian framework for estimating disease
risk due to exposure to uranium mine and mill waste on the Navajo
Nation. 178, 1069–1091. | |
dc.relation | Ishtiaq, M., Jehan, N., Khan, S.A., Muhammad, S., Saddique, U., Iftikhar, B.,
Zahidullah, 2018. Potential harmful elements in coal dust and human
health risk assessment near the mining areas in Cherat, Pakistan.
Environ Sci Pollut Res Int 25, 14666–14673. | |
dc.relation | Joaquim, A.C., Lopes, M., Stangherlin, L., Castro, K., Ceretta, L.B., Longen,
W.C., Ferraz, F., Perry, I.D.S., 2018. Mental health in underground coal
miners. Arch Environ Occup Health 73, 334–343 | |
dc.relation | Kaksonen, A.H., Lakaniemi, A.M., Tuovinen, O.H., 2020. Acid and ferric sulfate
bioleaching of uranium ores: A review. Journal of Cleaner Production
264, 121586. | |
dc.relation | Keith, S., Faroon, O., Roney, N., Scinicariello, F., Wilbur, S., Ingerman, L.,
Llados, F., Plewak, D., Wohlers, D., Diamond, G., 2013. Toxicological
Profile for Uranium, Atlanta (GA). | |
dc.relation | Kelepertzis, E., 2014. Investigating the sources and potential health risks of
environmental contaminants in the soils and drinking waters from the
rural clusters in Thiva area (Greece). Ecotoxicol Environ Saf 100, 258–
265. | |
dc.relation | Khijniak, T. V., Slobodkin, A. I., Coker, V., Renshaw, J. C., Livens, F. R., BonchOsmolovskaya, E. A., Birkeland, N. K., Medvedeva-Lyalikova, N. N., Lloyd, J. R. Reduction of uranium(VI) phosphate during growth of the
thermophilic bacterium Thermoterrabacterium ferrireducens. Applied
Environmental Microbiology 71, 6423–6426. | |
dc.relation | Kolker A., 2012. Minor element distribution in iron disulfides in coal: a
geochemical review. Int. J. Coal Geol. 94, 32–43 | |
dc.relation | Korchagin, J.; Canerb, L., Bortoluzzi, E.C., 2019. Variability of amethyst mining
waste: A mineralogical and geochemical approach to evaluate the
potential use in agriculture. Journal of Cleaner Production 210, 749–758. | |
dc.relation | Kronbauer, M.A., Izquierdo, M., Dai, S., Waanders, F.B., Wagner, N.J.,
Mastalerz, M., Hower, J.C., Oliveira, M.L.S., Taffarel, S.R., Bizani, D.,
Silva, L.F.O., 2013. Geochemistry of ultra-fine and nano-compounds in
coal gasification ashes: a synoptic view. Science of the total environment
456, 95–103. | |
dc.relation | Kurttio, P., Auvinen, A., Salonen, L., Saha, H., Pekkanen, J., Makelainen, I.,
Vaisanen, S.B., Penttila, I.M., Komulainen, H., 2002. Renal effects of
uranium in drinking water. Environ Health Perspect 110, 337–342. | |
dc.relation | Kurttio, P., Komulainen, H., Leino, A., Salonen, L., Auvinen, A., Saha, H., 2005.
Bone as a possible target of chemical toxicity of natural uranium in
drinking water. Environ Health Perspect 113, 68–72 | |
dc.relation | Landrigan, P., J., 2016. Air pollution and health. The Lancet 2, 1–5. | |
dc.relation | Laney, A.S., Weissman, D.N., 2014. Respiratory diseases caused by coal mine
dust. J Occup Environ Med 56 Suppl 10, S18–22. | |
dc.relation | Lecomte, A., Cathelineau, M., Deloule, E., Brouand, M., Peiffert, C., LoukolaRuskeeniemi, K., Pohjolainen, E., Lahtinen, H., 2014. Uraniferous
bitumen nodules in the Talvivaara Ni–Zn–Cu–Co deposit (Finland):
influence of metamorphism on uranium mineralization in black shales.
Miner. Deposita, 49, 513–533. | |
dc.relation | León-Mejía, G., Espitia-Pérez, L., Hoyos-Giraldo, L.S., Da Silva, J., Hartmann,
A., Henriques, J.A., Quintana, M., 2011. Assessment of DNA damage in
coal open-cast mining workers using the cytokinesis-blocked
micronucleus test and the comet assay. Sci Total Environ 409, 686–691. | |
dc.relation | Leon-Mejia, G., Machado, M.N., Okuro, R.T., Silva, L.F.O., Telles, C., Dias, J.,
Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018.
Intratracheal instillation of coal and coal fly ash particles in mice induces
DNA damage and translocation of metals to extrapulmonary tissues. Sci
Total Environ 625, 589-599. | |
dc.relation | Leon-Mejia, G., Quintana, M., Debastiani, R., Dias, J., Espitia-Perez, L.,
Hartmann, A., Henriques, J.A., Da Silva, J., 2014. Genetic damage in
coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol
Environ Saf 107, 133–139. | |
dc.relation | Lewis, J., Hoover, J., MacKenzie, D., 2017. Mining and Environmental Health
Disparities in Native American Communities. Curr Environ Health Rep 4,
130–141 | |
dc.relation | Lin, J., Pan, D., Davis, S.J., Zhang, Q., He, K., Wang, C., Streets, D.G.,
Wuebbles, D.J., Guan, D., 2014. China's international trade and air
pollution in the United States. Proc Natl Acad Sci USA 111, 1736–1741. | |
dc.relation | Liu, B., Peng, T., Sun, H., 2017. Leaching behavior of U, Mn, Sr, and Pb from
different particle-size fractions of uranium mill tailings. Environ. Sci.
Pollut. Res., 24, 1–12. | |
dc.relation | Liu, X., Li, Q., Zhang, Y., Yang, Y., Xu, B. and Jiang, T. 2019 Formation
Process of the Passivating Products from Arsenopyrite Bioleaching by
Acidithiobacillus ferrooxidans in 9K Culture Medium. Metals 9, 1320. | |
dc.relation | Liu, Y., Gupta, R., Sharma, A., Wall, T., Butcher, A., Millier, G., Gottlieb, P.,
French, D., 2005. Mineral matter–organic matter association
characterisation by QEMSCAN and applications in coal utilisation. Fuel
84, 1259–1267 | |
dc.relation | Lütke, S.F., Oliveira, M.L.S., Silva, L.F.O., Cadaval, T.R.S., Dotto, G.L., 2020.
Nanominerals Assemblages and Hazardous Elements Assessment in
Phosphogypsum from an Abandoned Phosphate Fertilizer Industry.
Chemosphere 256, 127138. | |
dc.relation | Ma, M., Wang, R., Xu, L., Xu, M., Liu, S., 2020. Emerging health risks and
underlying toxicological mechanisms of uranium contamination: Lessons
from the past two decades. Environ Int 145, 106107. | |
dc.relation | Madejová, J., 2003. Review: FTIR techniques in clay mineral studies. Vib.
Spectrosc., 31, 1–10. | |
dc.relation | Majumder, E.L.W., Wall, J.D., 2017. Bio-transformations of uranium: Chemical
or biological processes? Open J. Inorg. Chem. 7, 28–60. | |
dc.relation | Mäkinen, J., Wendling, L., Lavonen, T., Kinnunen, P., 2019. Sequential
bioleaching of phosphorus and uranium. Minerals 9, 331. | |
dc.relation | Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E., 2020.
Environmental and Health Impacts of Air Pollution: A Review. Front
Public Health 8, 14. | |
dc.relation | Martin, A., Hassan-Loni, Y., Fichtner, A., Stumpf, T., Montavon, G., 2020. An
integrated approach combining soil profile, records and tree ring analysis
to identify the origin of environmental contamination in a former uranium
mine (Rophin, France). Science of the Total Environment 747,141295 | |
dc.relation | Martinello, K., Oliveira, M., Molossi, F., Ramos, C., Teixeira, E., Kautzmann, R.,
Silva, L.F., 2014. Direct identification of hazardous elements in ultra-fine
and nanominerals from coal fly ash produced during diesel co-firing.
Science of the total environment 470, 444–452 | |
dc.relation | McDaniel, D.K., Ringel-Scaia, V.M., Morrison, H.A., Coutermarsh-Ott, S.,
Council-Troche, M., Angle, J.W., Perry, J.B., Davis, G., Leng, W.,
Minarchick, V., Yang, Y., Chen, B., Reece, S.W., Brown, D.A., Cecere,
T.E., Brown, J.M., Gowdy, K.M., Hochella, M.F. Jr., Allen, I.C., 2019.
Pulmonary exposure to Magnéli phase titanium suboxides results in
significant macrophage abnormalities and decreased lung function.
Frontiers in Immunology 10, 2714. | |
dc.relation | McGill, B. D., Marlatt, J.L., Matthews, R.B., Sopuck, V.J., Homeniuk, L.A. and
Hubregtse, J.J., 1993. The P2 North Uranium deposit, Saskatchewan,
Canada. Exploration Mining Geology 2, 321–331. | |
dc.relation | Mechi, A.S., D.J, 2010. The environmental Impact of Mining in the state of são
Paulo. estudos avançados 24, 209–220. | |
dc.relation | Mohanty, B., P., Mahananda, M., R., 2015. Reproductive Health Hazards of
Coal mine male Workers in Lakhanpur Open cast mines. International
Journal of Biomedical Research 6. | |
dc.relation | Moreno, T., Trechera, P., Querol, X., Wrana, A., Williamson, B. 2019. Trace
element fractionation between PM10 and PM2.5 in coal mine dust:
Implications for occupational respiratory health. International Journal of
Coal Geology 203, 52–59. | |
dc.relation | Mudd, G.M., 2009. The Sustainability of Mining in Australia: Key Production
Trends and Their Environmental Implications for the Future. Research
Report No. RR5. Department of Civil Engineering, Monash University
and Mineral Policy Institute. | |
dc.relation | Munawer, M.E., 2018. Human health and environmental impacts of coal
combustion and post-combustion wastes. Journal of Sustainable Mining
17, 87–96. | |
dc.relation | Murakami, T., Sato, T., Ohnuki, T., Isobe, H., 2005. Field evidence for uranium
nanocrystallization and its implications for uranium transport. Chemical
Geology 221, 117–126. | |
dc.relation | Nancucheo, I., Johnson, D.B., Lopes, M., Oliveira, G., 2017. Reductive
dissolution of a lateritic ore containing rare earth elements (REE) using
Acidithiobacillus species. Solid State Phenom., 262, 299–302. | |
dc.relation | Nesterenko, A.B., Nesterenko, V.B., Yablokov, A.V., 2009. Chapter II.
Consequences of the Chernobyl Catastrophe for Public Health. 1181,
31–220. | |
dc.relation | Neves, M. O., Abreu, M. M., Figueiredo, V., 2012. Environmental Geochemistry
and Health volume 34, 181–189. | |
dc.relation | Neves, M.O., Abreu, M.M., Figueiredo, V., 2012. Uranium in vegetable
foodstuffs: should residents near the Cunha Baixa uranium mine site
(Central Northern Portugal) be concerned? Environ Geochem Health 34,
181–189. | |
dc.relation | Nordin, A.P., Da Silva, J., De Souza, C., Niekraszewicz, L.A.B., Dias, J.F., Da
Boit, K., Oliveira, M.L.S., Grivicich, I., Garcia, A.L., Silva, L.F., Da Silva,
F.R., 2018. In vitro genotoxic effect of secondary minerals crystallized in
rocks from coal mine drainage. Journal of Hazardous Materials, 346,
263–272. | |
dc.relation | Oikonomopoulos I.K., Perraki M., Tougiannidid N., Perraki T., Kasper H.U.,
Gurk M. 2015. Clays from Neogene Achlada lignite deposits in Florina
basin (Western Macedonia, N. Greece): a prospective resource for the
ceramics industry Appl. Clay Sci. 103, 1–9. | |
dc.relation | O'Keefe, J.M.K., Bechtel, A., Christianis, K., Dai, S., DiMichele, W.A., Eble,
C.F., Esterle, J.S., Mastalerz, M., Raymond, A.L., Valentim, B.V.,
Wagner, N.J., Ward, C.R., Hower, J.C., 2013. On the fundamental
difference between coal rank and coal type. Int. J. Coal Geol. 118, 58–
87. | |
dc.relation | Oliveira, M. L. S., Pinto, D., Tutikian, B.F., Da Boit, K., Saikia, B.K., Silva,
L.F.O., 2019. Pollution from uncontrolled coal fires: Continuous gaseous
emissions and nanoparticles from coal mining industry. Journal of
Cleaner Production 215, 1140–1148. | |
dc.relation | Oliveira, M. L.S., Ward, C.R., Izquierdo, M., Sampaio, C.H., De Brum, I.A.S.,
Kautzmann, R.M., Sabedot, S., Querol, X., Silva, L.F.O., 2012a.
Chemical composition and minerals in pyrite ash of an abandoned
sulphuric acid production plant. Science of the Total Environment 430,
34–47. | |
dc.relation | Oliveira, M.L., Da Boit, K., Schneider, I., Teixeira, E., Crissien T., Silva, L.F.,
2018. Study of coal cleaning rejects by FIB and sample preparation for
HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control
for health studies. Journal of Cleaner Production 188, 662-669. | |
dc.relation | Oliveira, M.L., Marostega, F., Taffarel, S.R., Saikia, B.K., Waanders, F.B.,
DaBoit, K., Baruah, B.P., Silva, L.F., 2014. Nano-mineralogical
investigation of coal and fly ashes from coal-based captive power plant
(India): an introduction of occupational health hazards. Sci Total Environ
468, 1128–1137. | |
dc.relation | Oliveira, M.L.S., Waanders, F. Silva, L., Jasper, A., Mchabe, D., Hatch, R.,
Hower, J., Sampaio, C. H., 2011. A multi-analytical approach to
understand the chemistry of fe-minerals in feed coals and ashes. Coal
combustion and gasification products 3, 51–62. | |
dc.relation | Oliveira, M.L.S., Ward, Colin R., French, D., Hower, J. C., Querol, X., Silva,
L.F.O., 2012b. Mineralogy and leaching characteristics of beneficiated
coal products from santa catarina, brazil. International Journal of Coal
Geology 94, 314–325. | |
dc.relation | Orem, W.H., Finkelman, R.B.J.T.o.G., 2003. Coal Formation and Geochemistry.
Treatise on Geochemistry 7, 407. | |
dc.relation | Othmane, G., Allard, T., Menguy, N., Morin, G., Esteve, I., Fayek, M., and
Calas, G., 2013. Evidence for nanocrystals of vorlanite, a rare uranate
mineral, in the Nopal I low-temperature uranium deposit (Sierra Peña
Blanca, Mexico). American Mineralogist 98, 518–521. | |
dc.relation | Pacheco, S.W.A., Quintão L.D., Fabris J.D., 2014. Mössbauer analysis of coal
coke samples from Samacá, Boyacá, Colombia. Hyperfine Interact. 224,
271–275. | |
dc.relation | Permana, A., Ward, C.R., Li, Z., Gurba, L.W., 2013. Distribution and origin of
minerals in high-rank coals of the South Walker Creek area, Bowen
Basin, Australia. Int. J. Coal Geol. 116, 185–207. | |
dc.relation | Perret, J.L., Plush, B., Lachapelle, P., Hinks, T.S., Walter, C., Clarke, P., Irving,
L., Brady, P., Dharmage, S.C., Stewart, A., 2017. Coal mine dust lung
disease in the modern era. Respirology 22, 662–670. | |
dc.relation | Pidchenko, I., Bauters, S., Sinenko, I., Baker, R.J., Kvashnina, K.O., 2020. A
multi-technique study of altered granitic rock from the Krunkelbach Valley
uranium deposit, Southern Germany. RSC Advances 10, 25529–25539 | |
dc.relation | Quispe, D., Pérez-López, R., Silva, L.F., Nieto, J., 2012. Changes in mobility of
hazardous elements during coal combustion in santa catarina power
plant (Brazil). Fuel, 94, 495–503. | |
dc.relation | Ramos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I.
A. H., Oliveira, L. F. S., & Kautzmann, R. M., 2017. Evaluation of the
potential of volcanic rock waste from southern Brazil as a natural soil
fertilizer. Journal of Cleaner Production 142, 2700–2706. | |
dc.relation | Ren, B., Zhou, Y., Hursthouse, A.S., Deng, R., 2017. Research on the
characteristics and mechanism of the cumulative release of antimony
from an antimony smelting slag stacking area under rainfall leaching.
Anal, J., Methods Chem. | |
dc.relation | Ribeiro, J., Daboit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013.
Extensive FE-sSEM/EDS, HR-TEM/EDS and TOF-SIMS studies of
micron- to nano-particles in anthracite fly ash. Science of the total
environment 452, 98-107. | |
dc.relation | Ribeiro, J., Flores, D., Ward, C., Silva, L.F.O., 2010. Identification of
nanominerals and nanoparticles in burning coal waste piles from
portugal. Science of the total environment 408, 6032-6041. | |
dc.relation | Riley, K.W., French, D.H., Farrell, O.P., Wood, R.A., Huggins, F.E., 2012.
Modes of occurrence of trace and minor elements in some Australian
coals. Int. J. Coal Geol. 94, 214-224. | |
dc.relation | Robertson, J., Hendry, M.J., Essilfie-Dughan, J., Chen, J.J., 2016. Precipitation
of aluminum and magnesium secondary minerals from uranium mill
raffinate (pH 1.0-10.5) and their controls on aqueous contaminants.
Applied Geochemistry 64, 30–42. | |
dc.relation | Rodriguez-Iruretagoiena, A., De Vallejuelo, S., De Diego, A., De Leão, F., De
Medeiros, D., Oliveira, M., Taffarel, S., Arana, G., Madariaga, J., Silva,
L.F., 2016. The mobilization of hazardous elements after a tropical storm
event in a polluted estuary. Science of the Total Environment 565, 721–
729. | |
dc.relation | Rovira, J.S., Ma, N.M, Domingo, J.L., 2018. Contamination by Coal Dust in the
Neighborhood of the Tarragona Harbor (Catalonia, Spain): A Preliminary
Study. The Open Atmospheric Science Journal 12, 14–20. | |
dc.relation | Sadowski, Z., Sklodowska, A., 2016. UO2 nanoparticles synthesis from leaching
solutions on the hematite support. Annales Universitatis Maria CurieSklowski A Lublin-Polonia 10.17951/aa.2016.71.1.79 VOL. LXXI, 1
SECTIO AA | |
dc.relation | Sahu, H.B., Prakash, N., Jayanthu, S., 2015. Underground Mining for Meeting
Environmental Concerns – A Strategic Approach for Sustainable Mining
in Future. Procedia Earth and Planetary Science 11, 232–241. | |
dc.relation | Saikia, B.K., Saikia, J., Rabha, S., Silva, L.F., Finkelman, R., 2018. Ambient
nanoparticles/nanominerals and hazardous elements from coal
combustion activity: Implications on energy challenges and health
hazards. Geoscience Frontiers, 9, 863–875. | |
dc.relation | Saikia, M., Tonkeswar, D., Nikalabh, D., Fan, X., Silva, L.F.O., Saikia, B.K.,
2020. Formation of Carbon Quantum Dots and Graphene Nanosheets
from Different Abundant Carbonaceous Materials. Diamond and Related
Materials 106, 107813 | |
dc.relation | Sánchez-Peña, N.E., Narváez-Semanate, J. L., Pabón-Patiño, D., FernándezMera, J. E., Oliveira, M. L., Da Boit, K., Tutikian B., Crissien, T., Pinto,
D., Serrano, I., Ayala, C., Duarte, A., Ruiz, J., Silva, L.F., 2018. Chemical
and nano-mineralogical study for determining potential uses of legal
Colombian gold mine sludge: Experimental evidence. Chemosphere 191,
1048–1055. | |
dc.relation | Sanchís, J., Boovi', D., Al-Harbi, N.A., Silva, L.F., Farré, M., Barceló, D., 2013.
Quantitative trace analysis of fullerenes in river sediment from spain and
soils from saudi arabia. Analytical and Bioanalytical Chemistry 405,
5915–5923 | |
dc.relation | Sanchís, J., Oliveira, L.F., De Leão, F., Farré, M., Barceló, D., 2015. Liquid
chromatography-atmospheric pressure photoionization-orbitrap analysis
of fullerene aggregates on surface soils and river sediments from santa
catarina (brazil). Science of the Total Environment 505, 172–179. | |
dc.relation | Savabieasfahani, M., Ahamadani, B.F., Damghani, M.A., 2020. Living near an
active U.S. military base in Iraq is associated with significantly higher hair
thorium and increased likelihood of congenital anomalies in infants and
children. Environ Pollut 256, 113070. | |
dc.relation | Schindler, M., Durocher, J., Kotzer, T.K., Hawthorne, F.C., 2012. Uraniumbearing phases in mine tailings of Northern Canada: Products of the
interaction between leachate/raffinate and tailings material. Applied
Geochemistry 29, 151–161 | |
dc.relation | Schindler, M., Fayek, M and Hawthorne, F.C., 2010. Uranium in opaline rockcoatings at the Uranium Ore Deposit Nopal 1, Pena Blanca, Mexico:
Indications for the uptake and retardation of radionuclides. Geochimica et
Cosmochimica Acta 74, 187–202. | |
dc.relation | Schindler, M., Legrand, C.A., Hochella, M.F., 2015. Alteration, adsorption and
nucleation processes on clay-water interfaces: Mechanisms for the
retention of uranium by altered clay surfaces on the nanometer scale.
Geochimica et Cosmochimica Acta 153, 15–36 | |
dc.relation | Schindler, M., Lussier, A.J. Bellrose, J., Rouvimov, S., Burns, P.C., Kyser, K.
2017. A nano-mineralogical study of samples from the Matoush Uranium
ore deposit: Further evidence for the mobilization and coalescence of
uraninite nanoparticles. American Mineralogist 102, 1776–1787. | |
dc.relation | Sehn, J., De Leão, F., Da Boit, K., Oliveira M., Hidalgo G., Sampaio C., Silva,
L.F., 2016. Nanomineralogy in the real world: a perspective on
nanoparticles in the environmental impacts of coal fire. Chemosphere
147, 439–443 | |
dc.relation | Shelley, R., Kim, N.S., Parsons, P.J., Lee, B.K., Agnew, J., Jaar, B.G.,
Steuerwald, A.J., Matanoski, G., Fadrowski, J., Schwartz, B.S., Todd,
A.C., Simon, D., Weaver, V.M., 2014. Uranium associations with kidney
outcomes vary by urine concentration adjustment method. J Expo Sci
Environ Epidemiol 24, 58–64 | |
dc.relation | Shi, R., Meacham, S., Davis, G.C., You, W., Sun, Y., Goessl, C., 2019. Factors
influencing high respiratory mortality in coal-mining counties: a repeated
cross-sectional study. BMC Public Health 19, 1484. | |
dc.relation | Silva, L.F., Da Boit, K., Oliveira, M., Hower, J., 2010b. Fullerenes and
metallofullerenes in coal-fired stoker fly ash. Coal combustion and
gasification products 2, 1–11. | |
dc.relation | Silva, L.F., Izquierdo, M., Querol, X., Finkelman, R.B., Oliveira, M.L.,
Wollenschlager, M., Towler, M., Pérez-López, R., Macias, F., 2011a.
Leaching of potential hazardous elements of coal cleaning rejects.
Environ Monit Assess 175, 109–126. | |
dc.relation | Silva, L.F., O, Ward, C., R, Hower, J., C, Izquierdo, M., Waanders, F., Oliveira,
M., L,S, Li, Z., Hatch, R., S, Querol, X., 2010c. Mineralogy and Leaching
Characteristics of Coal Ash from a Major Brazilian Power Plant. Coal
Combustion and Gasification Products | |
dc.relation | Silva, L.F., Querol, X., Da Boit, K., Fdez-Ortiz De Vallejuelo S., Madariaga,
J.M., 2011a. Brazilian coal mining residues and sulphide oxidation by
fenton s reaction: an accelerated weathering procedure to evaluate
possible environmental impact. Journal of hazardous materials, 186,
516–525. | |
dc.relation | Silva, L.F., Wollenschlager, M., Oliveira, M., 2011b. A preliminary study of coal
mining drainage and environmental health in the santa catarina region,
brazil. Environmental geochemistry and health, 33, 55-65. | |
dc.relation | Silva, L.F.O., Crissien, T.J., Milanes, C., Sampaio, C.H., 2020c. A ThreeDimensional Nanoscale Study in Selected Coal Mine Drainage.
Chemosphere 248, 125946. | |
dc.relation | Silva, L.F.O., Crissien, T.J., Schneider, I.L., Blanco, É.P., Sampaio, C.H.,
2020d. Nanometric particles of high economic value in coal fire region:
Opportunities for social improvement. Journal of Cleaner Production 256,
120480. | |
dc.relation | Silva, L.F.O., Crissien, T.J., Tutikian, B. F., Sampaio, C.H., 2020b. Rare Earth
Elements and carbon nanotubes in coal mine around spontaneous
combustions. Journal of Cleaner Production 253, 120068. | |
dc.relation | Silva, L.F.O., da Boit, K., 2011. Nanominerals and Nanoparticles in Feed Coal
and Bottom Ash: Implications for Human Health Effects. Environ Monit
Assess 174, 187–197 | |
dc.relation | Silva, L.F.O., Hower, J., Izquierdo, M., Querol, X., 2010a. Complex
nanominerals and ultrafine particles assemblages in phosphogypsum of
the fertilizer industry and implications on human exposure. Science of the
Total Environment 408, 5117–5122. | |
dc.relation | Silva, L.F.O., Jasper, A., Andrade, M.L., Sampaio, C.H., Dai, S., Li, X., Li, T.,
Chen, W., Wang, X., Liu, H., Zhao, L., Hopps, S.G., Jewell, R.F., Hower,
J.C., 2012a. Applied investigation on the interaction of hazardous
elements binding on ultrafine and nanoparticles in chinese anthracitederived fly ash. Science of the Total Environment 419, 250–264. | |
dc.relation | Silva, L.F.O., Oliveira M.L.S., Philippi, V., Serra, C., Dai, S., Xue, W., Chen, W.,
O'keefe, J.M.K., Romanek, C.S., Hopps, S.G., Hower, J.C., 2012b.
Geochemistry of carbon nanotube assemblages in coal fire soot, ruth
mullins fire, perry county, kentucky. International journal of Coal Geology
94, 206–213. | |
dc.relation | Silva, L.F.O., Oliveira, M.L.S., da Boit, K.M., Finkelman, R.B., 2009.
Characterization of Santa Catarina (Brazil) coal with respect to human
health and environmental concerns. Environ Geochem Health 31, 475–
485. | |
dc.relation | Silva, L.F.O., Oliveira, M.L.S., Sampaio, C.H., De Brum, I.A.S., Hower, J.C.,
2013. Vanadium and nickel speciation in pulverized coal and petroleum
coke co-combustion. Energy & Fuels 27, 1194–1203. | |
dc.relation | Silva, Luis F.O., Crissien, T. J., Sampaio, C. H., Hower, J. C., Dai, S., 2020a.
Occurrence of carbon nanotubes and implication for the siting of
elements in selected anthracites. Fuel 263, 116740. | |
dc.relation | Souidi, M., Gueguen, Y., Linard, C., Dudoignon, N., Grison, S., Baudelin, C.,
Marquette, C., Gourmelon, P., Aigueperse, J., Dublineau, I., 2005. In vivo
effects of chronic contamination with depleted uranium on CYP3A and
associated nuclear receptors PXR and CAR in the rat. Toxicology 214,
113–122. | |
dc.relation | Stanton, R.W., Finkelman, R.B., 1979. Petrographic analysis of bituminous coal:
optical and SEM identification of constituents. Scan. Electron Microsc., 1,
465–471. | |
dc.relation | Sumant, A., Lichtner, P.C., Ali., A.S. González-Pinzó, R., Blake, J.M., Cerrato, J.M., 2017. Reactive transport of U and V from abandoned uranium mine wastes. Environmental Science and Technology 51, 12385-12393 | |
dc.relation | Suzuki, Y., Kelly, S.D., Kemner, K.M., Banfield, J.F., 2002. Nanometre-size
products of uranium bioreduction. Nature 419, 134. | |
dc.relation | Suzuki, Y., Mukai, H., Ishimura, T., Yokoyama, T.D., Sakata, S., Hirata, T.,
Iwatsuki, T., and Mizuno, T., 2016. Formation and Geological
Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer.
Scientific Reports 6, 22701. | |
dc.relation | Tang, R.K., Wang, L., Orme, J., 2004. Dissolution at the nanoscale: Selfpreservation of biominerals. Angew Chem Int Ed 43, 2697–2701. | |
dc.relation | Taylor, G.H., Teichmuller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P.,
1998. Organic Petrology Gebruder Borntraeger, Berlin, (704 pp.) | |
dc.relation | Tiwary, R.K., 2001. Environmental Impact of Coal Mining on Water Regime and
Its Management. Water, Air, and Soil Pollution 132, 185–199. | |
dc.relation | Trechera, P., Moreno, T., Córdoba, P., Kelly, F., Querol, X. 2020. Mineralogy,
geochemistry and toxicity of size-segregated respirable deposited dust in
underground coal mines. Journal of Hazardous Materials 399, 15. | |
dc.relation | Ulrich, K-U, Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O.,
Bernier-Latmani, R., Giammar, D.E., 2008. Dissolution of biogenic and
synthetic UO2 under varied reducing conditions. Environmental Science
& Technology 42, 5600–5606 | |
dc.relation | Utsunomiya, S., Jensen, K., Keller, G.J., Ewing, R.C., 2002. Uraninite and
Fullerene in Atmospheric Particulates 36, Environmental Science &
Technology 9, 4943–4947. | |
dc.relation | Waanders, F.B., Mulaba-Bafubiandi, A.F., Lodya, L., 2014. The South African
industry use of Mössbauer spectroscopy to solve operational problems.
Hyperfine Interact. 226, 721–735. | |
dc.relation | Wade-Gueye, N.M., Delissen, O., Gourmelon, P., Aigueperse, J., Dublineau, I.,
Souidi, M., 2012. Chronic exposure to natural uranium via drinking water
affects bone in growing rats. Biochim Biophys Acta 1820, 1121–1127. | |
dc.relation | Wang, J.K., Radovan, G., Kuang, S., Barbosa. C., Brito, H.M.J., Carbone, J.,
2016. Amazon boundary layer aerosol concentration sustained by
vertical transport during rainfall. Nature 539, 416–419. | |
dc.relation | Wang, Q., Li, L., Long, C.-L., Yang, Z.-G., Zhou, Y., 2020. Detection of C60 in
environmental water using dispersive liquid–liquid micro-extraction
followed by high-performance liquid chromatography. Environmental
Technology (United Kingdom) 41, 1015–1022. | |
dc.relation | Wang, S., Ran, Y., Lu, B., Li, J., Kuang, H., Gong, L., Hao, Y., 2020. A Review
of Uranium-Induced Reproductive Toxicity. Biological Trace Element
Research 196, 204–213. | |
dc.relation | Wang, X., Sun, Z., Liu, Y., Min, X., Guo, Y., Li, P., Zheng, Z., 2019. Effect of
particle size on uranium bioleaching in column reactors from a low-grade
uranium ore. Bioresour. Technol. 281, 66–71. | |
dc.relation | Wang, X.S., 2014. Mineralogical and chemical composition of magnetic fly ash
fraction. Environ. Earth Sci. 71, 1673–1681. | |
dc.relation | Wang, Y., Frutschi, M., Suvorova, E., Phrommavanh, V., Descostes, M.,
Osman, A.A.A. Geipel, G., Bernier-Latmani1, R., 2013. Mobile
uranium(IV)-bearing colloids in a mining-impacted wetland. Nature
Communications 4, 2942. | |
dc.relation | Ward, C., 2016. Analysis, origin and significance of mineral matter in coal: An
updated review. International Journal of Coal Geology 165,1–27. | |
dc.relation | Ward, C.R., 2013. Coal geology. Elias S. (Ed.), Reference Modules in Earth
Systems and Environmental Sciences, 30 pp. | |
dc.relation | Ward, C.R., Matulis, C.E., Taylor, J.C., Dale, L.S., 2001. Quantification of
mineral matter in Argonne Premium Coals using interactive Rietveldbased X-ray diffraction. Int. J. Coal Geol. 46, 67–82. | |
dc.relation | Warlo, M., Wanhainen, C., Martinsson, O., Karlsson, P., 2020. Mineralogy and
character of the Liikavaara Östra Cu-(W-Au) deposit, northern Sweden.
GFF 142(3), pp. 169-189. | |
dc.relation | WHO, 2005. Guidelines for drinking-water quality, 4th edition.
https://www.who.int/publications/i/item/9789241549950 4, 564. | |
dc.relation | Wilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, M.,
Cutruneo, C., Taffarel, S., Silva, L.F., Hopps, S., Thomas, G., Hower, J.,
2015. Observations and assessment of fly ashes from high-sulfur
bituminous coals and blends of high-sulfur bituminous and
subbituminous coals: environmental processes recorded at the macro
and nanometer scale. Energy & Fuels, 29 7168–7177. | |
dc.relation | Williamson, A.L., Schindler, M. and Spiers, G.A., 2017. Retention of Uranium,
Throrium and Rare Earth Elements in authigenic phases during
biogeochemical leaching experiments. Hydrometallurgy 177, 9–20. | |
dc.relation | Yablokov, A.V., Nesterenko, V.B., Nesterenko, A.V., 2009. Consequences of
the Chernobyl catastrophe for public health and the environment 23
years later. Ann N Y Acad Sci 1181, 318–326 | |
dc.relation | Yang, Y., Chen, B., Hower, J., Schindler, M., Winkler, C., Brandt, J., Di Giulio,
R., Liu, M., Fu, Y., Zhang, L., Priya, S., Hochella, M.F. Jr., 2017.
Discovery and ramifications of incidental Magnéli phase generation and
release from industrial coal burning. Nature Communications. For
immediate open access, go to http://dx.doi.org/10.1038/s41467-017-
00276-2. | |
dc.relation | Yang, Y., Ram, R., Pownceby, M.I., Chen, M. Bioleaching of synthetic uranium
minerals: uraninite, pitchblende, coffinite, brannerite and betafite.
Proceedings of the 23rd International Biohydrometallurgy Symposium
20-23 October, 2019. | |
dc.relation | Yang, Z., Li, Y., Ning, Y., Yang, S., Tang, Y., Zhang, Y., Wang, X., 2018. Effects
of oxidant and particle size on uranium leaching from coal ash. J.
Radioanal. Nucl. Chem. 317, 801–810 | |
dc.relation | Yapar, K., Cavusoglu, K., Oruc, E., Yalcin, E., 2010. Protective role of Ginkgo
biloba against hepatotoxicity and nephrotoxicity in uranium-treated mice.
J Med Food 13, 179–188. | |
dc.relation | Yin, M., Tsang, D.C.W., Sun, J., Xiao, T., Chen, D., 2020. Critical insight and
indication on particle size effects towards uranium release from uranium
mill tailings: Geochemical and mineralogical aspects. Chemosphere 250,
126315. | |
dc.relation | Yoreo, J.J., Pupa, U.P.A., Nico, G., 2015. Crystallization by particle
attachment. Science, 349, 6247. | |
dc.relation | Zamora, M.L., Zielinski, J.M., Moodie, G.B., Falcomer, R.A., Hunt, W.C.,
Capello, K., 2009. Uranium in drinking water: renal effects of long-term
ingestion by an aboriginal community. Arch Environ Occup Health 64,
228–241. | |
dc.relation | Zhang X., 2020. Crystallization via Nonclassical Pathways Volume 1:
Nucleation, Assembly, Observation & Application. American Chemical
Society, DOI: 10.1021/bk-2020-1358. | |
dc.relation | Zhang, W., Liu, W., Bao, S., Liu, H., Zhang, Y., Zhang, B., Zhou, A., Chen, J.,
Hao, K., Xia, W., Li, Y., Sheng, X., Xu, S., 2020. Association of adverse
birth outcomes with prenatal uranium exposure: A population-based
cohort study. Environ Int 135, 105391. | |
dc.relation | Zhou, Y., Ren, B., Hursthouse, A.S., Zhou, S., 2019. Antimony ore tailings:
heavy metals, chemical speciation, and leaching characteristics. Pol. J.
Environ. Stud., 28, 485–495. | |
dc.relation | Zychowski, K.E., Kodali, V., Harmon, M., Tyler, C.R., Sanchez, B., Ordonez
Suarez, Y., Herbert, G., Wheeler, A., Avasarala, S., Cerrato, J.M.,
Kunda, N.K., Muttil, P., Shuey, C., Brearley, A., Ali, A.M., Lin, Y., Shoeb,
M., Erdely, A., Campen, M.J., 2018. Respirable Uranyl-VanadateContaining Particulate Matter Derived From a Legacy Uranium Mine Site
Exhibits Potentiated Cardiopulmonary Toxicity. Toxicol Sci 164, 101–
114. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Gondwana Research | |
dc.source | https://www.sciencedirect.com/science/article/abs/pii/S1342937X21000149#! | |
dc.subject | Nanoparticles and nanominerals | |
dc.subject | Environmental impacts | |
dc.subject | Environmental contaminants | |
dc.subject | Mining activities | |
dc.subject | Human health | |
dc.title | Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: A review and perspective | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |