dc.creator | Eliceo Cortes, Eliceo | |
dc.creator | Mora, José | |
dc.creator | Márquez, Edgar | |
dc.date | 2020-10-27T22:44:53Z | |
dc.date | 2020-10-27T22:44:53Z | |
dc.date | 2020-08-11 | |
dc.date.accessioned | 2023-10-03T20:07:21Z | |
dc.date.available | 2023-10-03T20:07:21Z | |
dc.identifier | 2073-4352 | |
dc.identifier | https://hdl.handle.net/11323/7177 | |
dc.identifier | doi:10.3390/cryst10080692 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174370 | |
dc.description | Twenty-four cannabinoids active against MRSA SA1199B and XU212 were optimized
at WB97XD/6-31G(d,p), and several molecular descriptors were obtained. Using a multiple
linear regression method, several mathematical models with statistical significance were obtained.
The robustness of the models was validated, employing the leave-one-out cross-validation and
Y-scrambling methods. The entire data set was docked against penicillin-binding protein,
iso-tyrosyl tRNA synthetase, and DNA gyrase. The most active cannabinoids had high affinity to
penicillin-binding protein (PBP), whereas the least active compounds had low affinities for all of
the targets. Among the cannabinoid compounds, Cannabinoid 2 was highlighted due to its suitable
combination of both antimicrobial activity and higher scoring values against the selected target;
therefore, its docking performance was compared to that of oxacillin, a commercial PBP inhibitor.
The 2D figures reveal that both compounds hit the protein in the active site with a similar type
of molecular interaction, where the hydroxyl groups in the aromatic ring of cannabinoids play a
pivotal role in the biological activity. These results provide some evidence that the anti-Staphylococcus
aureus activity of these cannabinoids may be related to the inhibition of the PBP protein; besides,
the robustness of the models along with the docking and Quantitative Structure–Activity Relationship
(QSAR) results allow the proposal of three new compounds; the predicted activity combined with the
scoring values against PBP should encourage future synthesis and experimental testing. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | 1. Cosgrove, S.E.; Qi, Y.; Kaye, K.S.; Harbarth, S.; Karchmer, A.W.; Carmeli, Y. The Impact of Methicillin
Resistance in Staphylococcus aureus Bacteremia on Patient Outcomes: Mortality, Length of Stay, and Hospital
Charges. Infect. Control Hosp. Epidemiol. 2005, 26, 166–174. [CrossRef] [PubMed]
SA, 2007; pp. 771–831. | |
dc.relation | 2. Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S.
Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 1–23. [CrossRef] [PubMed] | |
dc.relation | 3. Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [CrossRef]
[PubMed] | |
dc.relation | 4. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.;
Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority
list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [CrossRef]
, MA, USA, 2007; pp. 771–831. | |
dc.relation | 5. Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: Are synergistic
combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev.
2017, 11, 57–72.
Boston | |
dc.relation | 6. Gibbons, S. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 2004, 21, 263–277. [CrossRef] | |
dc.relation | 7. Ballu, S.; Itteboina, R.; Sivan, S.K.; Manga, V. Rational design of methicillin resistance staphylococcus aureus
inhibitors through 3D-QSAR, molecular docking and molecular dynamics simulations. Comput. Biol. Chem.
2018, 73, 95–104. [CrossRef] | |
dc.relation | 8. Dias, T.; Gaudêncio, S.; Pereira, F. A Computer-Driven Approach to Discover Natural Product Leads for
Methicillin-Resistant Staphylococcus aureus Infection Therapy. Mar. Drugs 2018, 17, 16. [CrossRef] | |
dc.relation | 9. Uddin, R.; Lodhi, M.U.; Ul-Haq, Z. Combined Pharmacophore and 3D-QSAR Study on A Series of
Staphylococcus aureus Sortase A inhibitors. Chem. Biol. Drug Des. 2012, 80, 300–314. [CrossRef] | |
dc.relation | 10. Aso, E.; Ferrer, I. Cannabinoids for treatment of alzheimer’s disease: Moving toward the clinic.
Front. Pharmacol. 2014, 5, 37. [CrossRef] | |
dc.relation | 11. Anand, P.; Whiteside, G.; Fowler, C.J.; Hohmann, A.G. Targeting CB2 receptors and the endocannabinoid
system for the treatment of pain. Brain Res. Rev. 2009, 60, 255–266. [CrossRef] [PubMed] | |
dc.relation | 12. Notcutt, W.G. Clinical Use of Cannabinoids for Symptom Control in Multiple Sclerosis. Neurotherapeutics
2015, 12, 769–777. [CrossRef] [PubMed] | |
dc.relation | 13. Rosenberg, E.C.; Tsien, R.W.; Whalley, B.J.; Devinsky, O. Cannabinoids and Epilepsy. Neurotherapeutics
2015, 12, 747–768. [CrossRef] [PubMed] | |
dc.relation | 14. Velasco, G.; Hernández-Tiedra, S.; Dávila, D.; Lorente, M. The use of cannabinoids as anticancer agents.
Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 64, 259–266. [CrossRef] [PubMed] | |
dc.relation | 15. Ali, E.M.M.; Almagboul, A.Z.I.; Khogali, S.M.E.; Gergeir, U.M.A. Antimicrobial Activity of Cannabis sativa.
J. Chin. Med. 2012, 3, 61–64. [CrossRef] | |
dc.relation | 16. Novak, J.; Zitterl-Eglseer, K.; Deans, S.G.; Franz, C.M. Essential oils of different cultivars ofCannabis sativa L.
and their antimicrobial activity. Flavour Fragr. J. 2001, 16, 259–262. [CrossRef] | |
dc.relation | 17. Vemuri, V.K.; Makriyannis, A. Medicinal chemistry of cannabinoids. Clin. Pharmacol. Ther. 2015, 97, 553–558.
[CrossRef] | |
dc.relation | 18. Stott, C.G.; Guy, G.W. Cannabinoids for the pharmaceutical industry. In Proceedings of the Euphytica; Springer:
Berlin/Heidelberg, Germany, 2004; Volume 140, pp. 83–93. | |
dc.relation | 19. Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M.M. Antibacterial
cannabinoids from Cannabis sativa: A structure-activity study. J. Nat. Prod. 2008, 71, 1427–1430. [CrossRef] | |
dc.relation | 20. Carey, F.A.; Sundberg, R.J. Aromatic Substitution. In Advanced Organic Chemistry; Springer US: | |
dc.relation | 21. Carey, F.A.; Sundberg, R.J. Structural Effects on Stability and Reactivity. In Advanced Organic Chemistry;
Springer US: Boston, MA, USA, 2007; pp. 253–388.
l. Struct. 2019, 1197, 134–146. [CrossRef] | |
dc.relation | 22. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.;
Petersson, G.A.; Nakatsuji, H.; et al. G16_C01. Gaussian 16 for Linux. | |
dc.relation | 23. Hydrogen-Bonding Capacity and Brain Penetration: Ingenta Connect. Available online: https://www.
ingentaconnect.com/content/scs/chimia/1992/00000046/F0020007/art00003# (accessed on 13 May 2020). | |
dc.relation | 24. Torrent-Sucarrat, M.; De Proft, F.; Ayers, P.W.; Geerlings, P. On the applicability of local softness and hardness.
Phys. Chem. Chem. Phys. 2010, 12, 1072–1080. [CrossRef] | |
dc.relation | 25. Ghose, A.K.; Crippen, G.M. Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed
Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity.
J. Comput. Chem. 1986, 7, 565–577. [CrossRef] | |
dc.relation | 26. Labet, V.; Morell, C.; Cadet, J.; Eriksson, L.A.; Grand, A. Hydrolytic deamination of 5-methylcytosine in
protic medium-A theoretical study. J. Phys. Chem. A 2009, 113, 2524–2533. [CrossRef] [PubMed] | |
dc.relation | 27. Ginex, T.; Vazquez, J.; Gilbert, E.; Herrero, E.; Luque, F.J. Lipophilicity in drug design: An overview of
lipophilicity descriptors in 3D-QSAR studies. Future Med. Chem. 2019, 11, 1177–1193. [CrossRef] [PubMed] | |
dc.relation | 28. Rocha, L.L.L.; Ramos, A.L.D.; Filho, N.R.A.; Furtado, N.C.; Taft, C.A.; Aranda, D.A.G. Production of Biodiesel
by a Two-Step Niobium Oxide Catalyzed Hydrolysis and Esterification. Lett. Org. Chem. 2010, 7, 571–578.
[CrossRef]
29. Lan, N.T.N.; Thu, N.T.N.; Barrail-Tran, A.; Duc, N.H.; Lan, N.N.; Laureillard, D.; Lien, T.T.X.; Borand, L.;
Quillet, C.; Connolly, C.; et al. Randomised pharmacokinetic trial of rifabutin with lopinavir/ritonavirantiretroviral therapy in patients with HIV-associated tuberculosis in Vietnam. PLoS ONE 2014, 9, e84866.
[CrossRef] [PubMed] | |
dc.relation | 30. He, L.; Sun, X.; Zhu, F.; Ren, S.; Wang, S. OH-initiated transformation and hydrolysis of aspirin in AOPs
system: DFT and experimental studies. Sci. Total Environ. 2017, 592, 33–40. [CrossRef] [PubMed] | |
dc.relation | 31. Okubo, M.; Yamada, A. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes. ACS Appl.
Mater. Interfaces 2017, 9, 36463–36472. [CrossRef] | |
dc.relation | 32. Tarumi, M.; Matsuzaki, Y.; Suzuki, K. Theoretical study on the redox reaction mechanism of quinone
compounds in industrial processes. Chem. Eng. Sci. 2019, 199, 381–387. [CrossRef] | |
dc.relation | 33. Winkler, D.A. The Role of Quantitative Structure±Activity Relationships (QSAR) in Biomolecular Discovery.
Brief. Bioinform. 2002, 3, 73–86. [CrossRef] | |
dc.relation | 34. Fernández, I.; Frenking, G. The Diels-Alder Reaction from the EDA-NOCV Perspective: A Re-Examination
of the Frontier Molecular Orbital Model. Eur. J. Org. Chem. 2019, 2019, 478–485. [CrossRef] | |
dc.relation | 35. Grover, M.; Singh, B.; Bakshi, M.; Singh, S. Quantitative structure-property relationships in pharmaceutical
research-Part 1. Pharm. Sci. Technol. Today 2000, 3, 28–35. [CrossRef] | |
dc.relation | 36. Malhotra, R.; Ravesh, A.; Singh, V. Synthesis, characterization, antimicrobial activities, and QSAR studies of
organotin(IV) complexes. Phosphorussulfur Silicon Relat. Elem. 2017, 192, 73–80. [CrossRef] | |
dc.relation | 37. Kumer, A.; Paul, S. The Simulating Study of Homo, Lumo, Thermo Physical and Quantitative Structure of
Activity Relationship (Qsar) of Some Anticancer Active Ionic Liquids. Eur. J. Environ. Res. 2019, 3, 1–10. | |
dc.relation | 38. Kumar, A.; Grewal, A.S.; Singh, V.; Narang, R.; Pandita, D.; Lather, V. Synthesis, Antimicrobial Activity and
QSAR Studies of Some New Sparfloxacin Derivatives. Pharm. Chem. J. 2018, 52, 444–454. [CrossRef] | |
dc.relation | 39. Khodair, A.I.; Awad, M.K.; Gesson, J.P.; Elshaier, Y.A.M.M. New N-ribosides and N-mannosides of rhodanine
derivatives with anticancer activity on leukemia cell line: Design, synthesis, DFT and molecular modelling
studies. Carbohydr. Res. 2020, 487, 107894. [CrossRef] | |
dc.relation | 40. Suresh Kumar, S.; Athimoolam, S.; Sridhar, B. Structural, spectral, theoretical and anticancer studies on new
co-crystal of the drug 5-fluorouracil. J. Mol. Struct. 2018, 1173, 951–958. [CrossRef] | |
dc.relation | 41. Kanagamani, K.; Muthukrishnan, P.; Ilayaraja, M.; Shankar, K.; Kathiresan, A. Synthesis, Characterisation
and DFT Studies of Stigmasterol Mediated Silver Nanoparticles and Their Anticancer Activity. J. Inorg.
Organomet. Polym. Mater. 2018, 28, 702–710. [CrossRef] | |
dc.relation | 42. Jeyaseelan, S.C.; Premkumar, R.; Kaviyarasu, K.; Franklin Benial, A.M. Spectroscopic, quantum
chemical, molecular docking and in vitro anticancer activity studies on 5-Methoxyindole-3-carboxaldehyde.
J. Mo | |
dc.relation | 43. Sarkar, I.; Goswami, S.; Majumder, P. Quantitative structure–activity relationship (QSAR) study of some
DNA-intercalating anticancer drugs. In Proceedings of the Lecture Notes in Electrical Engineering; Springer:
Berlin/Heidelberg, Germany, 2020; Volume 575, pp. 357–366. | |
dc.relation | 44. Wang, J.; Yun, D.; Yao, J.; Fu, W.; Huang, F.; Chen, L.; Wei, T.; Yu, C.; Xu, H.; Zhou, X.; et al. Design, synthesis
and QSAR study of novel isatin analogues inspired Michael acceptor as potential anticancer compounds.
Eur. J. Med. Chem. 2018, 144, 493–503. [CrossRef] | |
dc.relation | 45. Baeten, A.; Tafazoli, M.; Kirsch-Volders, M.; Geerlings, P. Use of the HSAB principle in quantitative
structure–activity relationships in toxicological research: Application to the genotoxicity of chlorinated
hydrocarbons. Int. J. Quantum Chem. 1999, 74, 351–355. [CrossRef] | |
dc.relation | 46. Bradbury, S.P.; Mekenyan, O.G.; Ankley, G.T. The role of ligand flexibility in predicting biological activity:
Structure-activity relationships for aryl hydrocarbon, estrogen, and androgen receptor binding affinity.
Environ. Toxicol. Chem. 1998, 17, 15–25. | |
dc.relation | 47. Joshi, R.; Pandey, N.; Yadav, S.K.; Tilak, R.; Mishra, H.; Pokharia, S. Synthesis, spectroscopic
characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N’-(2- nitro-benzylidene)-
hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione. J. Mol. Struct. 2018, 1164, 386–403. [CrossRef] | |
dc.relation | 48. Joshi, R.; Kumari, A.; Singh, K.; Mishra, H.; Pokharia, S. Triorganotin(IV) complexes of Schiff base derived
from 1,2,4-triazole moiety: Synthesis, spectroscopic investigation, DFT studies, antifungal activity and
molecular docking studies. J. Mol. Struct. 2020, 1206, 127639. [CrossRef] | |
dc.relation | 49. Yan, Z.; Liu, A.; Huang, M.; Liu, M.; Pei, H.; Huang, L.; Yi, H.; Liu, W.; Hu, A. Design, synthesis, DFT study
and antifungal activity of the derivatives of pyrazolecarboxamide containing thiazole or oxazole ring. Eur. J.
Med. Chem. 2018, 149, 170–181. [CrossRef] [PubMed] | |
dc.relation | 50. Ali, M.S.; Farah, M.A.; Al-Lohedan, H.A.; Al-Anazi, K.M. Comprehensive exploration of the anticancer
activities of procaine and its binding with calf thymus DNA: A multi spectroscopic and molecular modelling
study. RSC Adv. 2018, 8, 9083–9093. [CrossRef] | |
dc.relation | 51. Rachedi, K.O.; Ouk, T.S.; Bahadi, R.; Bouzina, A.; Djouad, S.E.; Bechlem, K.; Zerrouki, R.; Ben Hadda, T.;
Almalki, F.; Berredjem, M. Synthesis, DFT and POM analyses of cytotoxicity activity of α-amidophosphonates
derivatives: Identification of potential antiviral O,O-pharmacophore site. J. Mol. Struct. 2019, 1197, 196–203.
[CrossRef] | |
dc.relation | 52. da Costa, R.M.; Bastos, J.K.; Costa, M.C.A.; Ferreira, M.M.C.; Mizuno, C.S.; Caramori, G.F.; Nagurniak, G.R.;
Simão, M.R.; dos Santos, R.A.; Veneziani, R.C.S.; et al. In vitro cytotoxicity and structure-activity relationship
approaches of ent-kaurenoic acid derivatives against human breast carcinoma cell line. Phytochemistry
2018, 156, 214–223. [CrossRef] | |
dc.relation | 53. Soffers, A.E.M.F.; Boersma, M.G.; Vaes,W.H.J.; Vervoort, J.; Tyrakowska, B.; Hermens, J.L.M.; Rietjens, I.M.C.M.
Computer-modeling-based QSARs for analyzing experimental data on biotransformation and toxicity.
In Proceedings of the Toxicology in Vitro; Pergamon: Bergama, Turkey, 2001; Volume 15, pp. 539–551. | |
dc.relation | 54. Lewis, D.F.V. Quantitative structure-activity relationships (QSARs) within the cytochrome P450 system:
QSARs describing substrate binding, inhibition and induction of P450s. Inflammopharmacology 2003, 11, 43–73.
[CrossRef] | |
dc.relation | 55. Strahan, J.; Popere, B.C.; Khomein, P.; Pointer, C.A.; Martin, S.M.; Oldacre, A.N.; Thayumanavan, S.;
Young, E.R. Modulating absorption and charge transfer in bodipy-carbazole donor-acceptor dyads through
molecular design. Dalton Trans. 2019, 48, 8488–8501. [CrossRef] | |
dc.relation | 56. Vikramaditya, T.; Saisudhakar, M.; Sumithra, K. Computational study on thermally activated delayed
fluorescence of donor-linker-acceptor network molecules. RSC Adv. 2016, 6, 37203–37211. [CrossRef] | |
dc.relation | 57. Santos Silva, H.; Metz, S.; Hiorns, R.C.; Bégué, D. Targeting ideal acceptor-donor materials based on
hexabenzocoronene. J. Mol. Struct. 2018, 1161, 442–452. [CrossRef] | |
dc.relation | 58. Wan, X.; Li, C.; Zhang, M.; Chen, Y. Acceptor–donor–acceptor type molecules for high performance organic
photovoltaics–chemistry and mechanism. Chem. Soc. Rev. 2020, 49, 2828–2842. [CrossRef] [PubMed] | |
dc.relation | 59. Lv, X.; Li, Z.; Li, S.; Luan, G.; Liang, D.; Tang, S.; Jin, R. Design of Acceptors with Suitable Frontier Molecular
Orbitals to Match Donors via Substitutions on Perylene Diimide for Organic Solar Cells. Int. J. Mol. Sci.
2016, 17, 721. [CrossRef] [PubMed] | |
dc.relation | 60. Hashemi, D.; Ma, X.; Ansari, R.; Kim, J.; Kieffer, J. Design principles for the energy level tuning in
donor/acceptor conjugated polymers. Phys. Chem. Chem. Phys. 2019, 21, 789–799. [CrossRef] [PubMed] | |
dc.relation | 61. Zhang, H.C.; Guo, E.Q.; Zhang, Y.L.; Ren, P.H.; Yang, W.J. Donor-acceptor-substituted anthracene-centered
cruciforms: Synthesis, enhanced two-photon absorptions, and spatially separated frontier molecular orbitals.
Chem. Mater. 2009, 21, 5125–5135. [CrossRef] | |
dc.relation | 62. Higashino, T.; Ishida, K.; Imahori, H. Modulation of Frontier Molecular Orbitals on
Dithieno[3,4- b :30
,40
- d]phosphole Derivatives by Donor-π-Acceptor Interaction. Chem. Lett.
2020, 49, 272–275. [CrossRef] | |
dc.relation | 63. Zhang, Z.; Guo, C.; Kwong, D.J.; Li, J.; Deng, X.; Fan, Z. A Dramatic Odd-Even Oscillating Behavior for
the Current Rectification and Negative Differential Resistance in Carbon-Chain-Modified Donor-Acceptor
Molecular Devices. Adv. Funct. Mater. 2013, 23, 2765–2774. [CrossRef] | |
dc.relation | 64. Sathya, A.; Prabhu, T.; Ramalingam, S. Structural, biological and pharmaceutical importance of antibiotic
agent chloramphenicol. Heliyon 2020, 6, e03433. [CrossRef] | |
dc.relation | 65. Alnoman, R.B.; Parveen, S.; Hagar, M.; Ahmed, H.A.; Knight, J.G. A new chiral boron-dipyrromethene
(BODIPY)-based fluorescent probe: Molecular docking, DFT, antibacterial and antioxidant approaches.
J. Biomol. Struct. Dyn. 2019. [CrossRef] | |
dc.relation | 66. Marinescu, M.; Cinteza, L.O.; Marton, G.I.; Marutescu, L.G.; Chifiriuc, M.C.; Constantinescu, C.
Density functional theory molecular modeling and antimicrobial behaviour of selected
1,2,3,4,5,6,7,8-octahydroacridine-N(10)-oxides. J. Mol. Struct. 2017, 1144, 14–23. [CrossRef] | |
dc.relation | 67. Celik, S.; Albayrak, A.T.; Akyuz, S.; Ozel, A.E.; Sigirci, B.D. Synthesis, antimicrobial activity, molecular
docking and ADMET study of a caprolactam-glycine cluster. J. Biomol. Struct. Dyn. 2020. [CrossRef]
coccus aureus by Bauhinia forficata link. Nat. Prod. Res. 2019. [CrossRef] [PubMed] | |
dc.relation | 68. Sobhani, S.; Pordel, M.; Beyramabadi, S.A. Design, synthesis, spectral, antibacterial activities and quantum
chemical calculations of new Cu (II) complexes of heterocyclic ligands. J. Mol. Struct. 2019, 1175, 677–685.
[CrossRef] | |
dc.relation | 69. Slassi, S.; Aarjane, M.; Yamni, K.; Amine, A. Synthesis, crystal structure, DFT calculations, Hirshfeld surfaces,
and antibacterial activities of schiff base based on imidazole. J. Mol. Struct. 2019, 1197, 547–554. [CrossRef]
hylo | |
dc.relation | 70. Özbek, N.; Özdemir, Ü.Ö.; Altun, A.F.; ¸Sahin, E. Sulfonamide-derived hydrazone compounds and their Pd (II)
complexes: Synthesis, spectroscopic characterization, X-ray structure determination, in vitro antibacterial
activity and computational studies. J. Mol. Struct. 2019, 1196, 707–719. [CrossRef] | |
dc.relation | 71. Khan, S.A.; Asiri, A.M.; Al-Ghamdi, N.S.M.; Asad, M.; Zayed, M.E.M.; Elroby, S.A.K.; Aqlan, F.M.; Wani, M.Y.;
Sharma, K. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising
antibacterial agents: In vitro, in silico and DFT studies. J. Mol. Struct. 2019, 1190, 77–85. [CrossRef] | |
dc.relation | 72. Flores, M.C.; Márquez, E.A.; Mora, J.R. Molecular modeling studies of bromopyrrole alkaloids as potential
antimalarial compounds: A DFT approach. Med. Chem. Res. 2018, 27, 844–856. [CrossRef] | |
dc.relation | 73. Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from
assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008, 3, 435–444.
[CrossRef] | |
dc.relation | 74. Iluz, N.; Maor, Y.; Keller, N.; Malik, Z. The synergistic effect of PDT and oxacillin on clinical isolates of
Staphylococcus aureus. Lasers Surg. Med. 2018, 50, 535–551. [CrossRef] | |
dc.relation | 75. Lee, H.; Boyle-Vavra, S.; Ren, J.; Jarusiewicz, J.A.; Sharma, L.K.; Hoagland, D.T.; Yin, S.; Zhu, T.; Hevener, K.E.;
Ojeda, I.; et al. Identification of small molecules exhibiting oxacillin synergy through a novel assay for
inhibition of vraTSR expression in methicillin-resistant staphylococcus aureus. Antimicrob. Agents Chemother.
2019, 63, e02593-18. [CrossRef] | |
dc.relation | 76. Legrand, T.; Vodovar, D.; Tournier, N.; Khoudour, N.; Hulin, A. Simultaneous determination of eight β-lactam
antibiotics, amoxicillin, cefazolin, cefepime, cefotaxime, ceftazidime, cloxacillin, oxacillin, and piperacillin,
in human plasma by using ultra-high-performance liquid chromatography with ultraviolet detection.
Antimicrob. Agents Chemother. 2016, 60, 4734–4742. [CrossRef] | |
dc.relation | 77. Nomura, R.; Nakaminami, H.; Takasao, K.; Muramatsu, S.; Kato, Y.; Wajima, T.; Noguchi, N. A class A
β-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyzes oxacillin. J. Glob.
Antimicrob. Resist. 2020, 22, 244–247. [CrossRef] | |
dc.relation | 78. de Sousa, J.N.; de Oliveira, A.B.M.; Ferreira, A.K.; Silva, E.; de Sousa, L.M.S.; França Rocha, M.C.; de, J.P.;
Júnior, S.; William Kaatz, G.; da Silva Almeida, J.R.G.; et al. Modulation of the resistance to norfloxacin in
Stap | |
dc.relation | 79. Goldstein, E.J.C. Norfloxacin, a fluoroquinolone antibacterial agent. Classification, mechanism of action,
and in vitro activity. Am. J. Med. 1987, 82, 3–17. [CrossRef] | |
dc.relation | 80. Barry, A.L.; Jones, R.N.; Thornsberry, C.; Ayers, L.W.; Gerlach, E.H.; Sommers, H.M. Antibacterial activities
of ciprofloxacin, norfloxacin, oxolinic acid, cinoxacin, and nalidixic acid. Antimicrob. Agents Chemother.
1984, 25, 633–637. [CrossRef] [PubMed] | |
dc.relation | 81. Mora, J.R.; Lezama, J.; Márquez, E.; Escalante, L.; Córdova, T.; Chuchani, G. Theoretical study of neighboring
carbonyl group participation in the elimination kinetics of chloroketones in the gas phase. J. Phys. Org. Chem.
2011, 24, 229–240. [CrossRef] | |
dc.relation | 82. Mora, J.; Cervantes, C.; Marquez, E. New Insight into the Chloroacetanilide Herbicide Degradation Mechanism
through a Nucleophilic Attack of Hydrogen Sulfide. Int. J. Mol. Sci. 2018, 19, 2864. [CrossRef] | |
dc.relation | 83. Miao, J.; Hua, S.; Li, S. Assessment of density functionals on intramolecular dispersion interaction in large
normal alkanes. Chem. Phys. Lett. 2012, 541, 7–11. [CrossRef] | |
dc.relation | 84. Eriksson, E.S.E.; Eriksson, L.A. Predictive power of long-range corrected functionals on the spectroscopic
properties of tetrapyrrole derivatives for photodynamic therapy. Phys. Chem. Chem. Phys. 2011, 13, 7207–7217.
[CrossRef] | |
dc.relation | 85. Zara, Z.; Iqbal, J.; Ayub, K.; Irfan, M.; Mahmood, A.; Khera, R.A.; Eliasson, B. A comparative study of
DFT calculated and experimental UV/Visible spectra for thirty carboline and carbazole based compounds.
J. Mol. Struct. 2017, 1149, 282–298. [CrossRef] | |
dc.relation | 86. Minenkov, Y.; Singstad, Å.; Occhipinti, G.; Jensen, V.R. The accuracy of DFT-optimized geometries of
functional transition metal compounds: A validation study of catalysts for olefin metathesis and other
reactions in the homogeneous phase. Dalton Trans. 2012, 41, 5526–5541. [CrossRef] | |
dc.relation | 87. Mazzone, G.; Malaj, N.; Russo, N.; Toscano, M. Density functional study of the antioxidant activity of some
recently synthesized resveratrol analogues. Food Chem. 2013, 141, 2017–2024. [CrossRef] | |
dc.relation | 88. Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom
dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [CrossRef] [PubMed] | |
dc.relation | 89. García-Jacas, C.R.; Marrero-Ponce, Y.; Acevedo-Martínez, L.; Barigye, S.J.; Valdés-Martiní, J.R.;
Contreras-Torres, E. QuBiLS-MIDAS: A parallel free-software for molecular descriptors computation
based on multilinear algebraic maps. J. Comput. Chem. 2014, 35, 1395–1409. [CrossRef] [PubMed] | |
dc.relation | 90. Majumdar, S.; Basak, S.C. Beware of External Validation!-A Comparative Study of Several Validation
Techniques used in QSAR Modelling. Curr. Comput. Aided Drug Des. 2018, 14, 284–291. [CrossRef] [PubMed] | |
dc.relation | 91. Baumann, K. Cross-validation as the objective function for variable-selection techniques. TrAC Trends
Anal. Chem. 2003, 22, 395–406. [CrossRef] | |
dc.relation | 92. Kiralj, R.; Ferreira, M.M.C. Basic validation procedures for regression models in QSAR and QSPR studies:
Theory and application. J. Braz. Chem. Soc. 2009, 20, 770–787. [CrossRef] | |
dc.relation | 93. Cawley, G.C. Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs.
In Proceedings of the 006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver,
BC, Canada, 16–21 July 2006; pp. 1661–1668. | |
dc.relation | 94. Shao, J. Linear model selection by cross-validation. J. Am. Stat. Assoc. 1993, 88, 486–494. [CrossRef] | |
dc.relation | 95. Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev. 2003, 23, 302–321. [CrossRef] | |
dc.relation | 96. Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in
pharmaceutical research. Adv. Drug Deliv. Rev. 2015, 86, 2–10. [CrossRef] | |
dc.relation | 97. Proudfoot, J.R. Drugs, leads, and drug-likeness: An analysis of some recently launched drugs. Bioorganic Med.
Chem. Lett. 2002, 12, 1647–1650. [CrossRef] | |
dc.relation | 98. Vistoli, G.; Pedretti, A.; Testa, B. Assessing drug-likeness-what are we missing? Drug Discov. Today 2008,
13, 285–294. [CrossRef] | |
dc.relation | 99. Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of
drugs. Nat. Chem. 2012, 4, 90–98. [CrossRef] [PubMed] | |
dc.relation | 100. RCSB PDB: Homepage. Available online: https://www.rcsb.org/ (accessed on 2 May 2020). | |
dc.relation | 101. Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news
and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.
J. Comput. Chem. 2009, 30, 2785–2791. [CrossRef] [PubMed] | |
dc.relation | 102. BIOVIA-Scientific Enterprise Software for Chemical Research, Material Science R&D. Available online:
https://www.3dsbiovia.com/ (accessed on 2 May 2020). | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | crystals | |
dc.source | https://www.mdpi.com/2073-4352/10/8/692 | |
dc.subject | Cannabinoids | |
dc.subject | Anti-MRSA | |
dc.subject | QSAR | |
dc.subject | Molecular docking | |
dc.subject | DFT | |
dc.title | Modelling the anti-methicillin-resistant staphylococcus aureus (MRSA) activity of cannabinoids: a QSAR and Docking study | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |