dc.creatorAmaris, Carlos
dc.creatorRodríguez, Andrés
dc.creatorSagastume, Alexis
dc.creatorBourouis, Mahmoud
dc.date2023-08-01T19:40:42Z
dc.date2023-08-01T19:40:42Z
dc.date2023
dc.date.accessioned2023-10-03T20:07:11Z
dc.date.available2023-10-03T20:07:11Z
dc.identifierAmaris, C., Rodriguez, A., Sagastume, A., Bourouis, M. (2023). Performance Assessment of a Solar/Gas Driven NH3/LiNO3 Absorption Cooling System for Malls. In: Narasimhan, N.L., Bourouis, M., Raghavan, V. (eds) Recent Advances in Energy Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-3467-4_19
dc.identifier978-981-19-3466-7
dc.identifierhttps://hdl.handle.net/11323/10359
dc.identifier10.1007/978-981-19-3467-4_19
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier978-981-19-3467-4
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174354
dc.descriptionThis study aims to assess the performance of a solar/gas assisted absorption chiller using NH3/LiNO3 for air conditioning in malls at the environmental conditions of the city of Barranquilla, Colombia. The performance of an NH3/LiNO3 absorption chiller with a nominal capacity of 352 kW is assessed using natural gas and solar energy for driving of the system. The solar irradiation in the city selected, the cooling requirements in three selected shopping malls, and roof area available for evacuated solar collectors were parameter considered for the study as well. For the evaluation of the chiller, a thermodynamic model is developed to estimate the effects of the environmental variables on the operation of the absorption system to produce chilled water at 12 °C. The estimated cooling effect provided by conventional compression chillers is used as the cooling target to be covered by the absorption chillers. Results showed that the area available for solar collectors is the main limitation for the installation of solar/gas absorption systems in malls. The peak cooling effect target was totally covered in mall two considering two solar/gas assisted chillers and a solar collector area of 2210 m2. In mall one, 83% of the peak cooling load was provided by two chillers, while for mall three, only 35% of the peak cooling load was provided by one chiller given the limitations in the area available for solar collectors. The maximum COP and SCOP values of the chillers were up to 0.64 and 0.41, respectively.
dc.format1 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer Verlag
dc.publisherGermany
dc.relationLecture Notes in Mechanical Engineering
dc.relationInternational Energy Agency—IEA (2010) Energy technology perspectives 2010. www.iea.org/etp
dc.relationPérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build. 40:394–398. https://doi.org/10.1016/J.ENBUILD.2007.03.007
dc.relationLi H, Li X (2018) Benchmarking energy performance for cooling in large commercial buildings. Energy Build. 176:179–193. https://doi.org/10.1016/j.enbuild.2018.07.039
dc.relationHassan JS, Zin RM, Majid MZA, Balubaid S, Hainin MR (2014) Building energy consumption in Malaysia: an overview. J Teknol 70:33–38. https://doi.org/10.11113/jt.v70.3574
dc.relationRavi Kumar K, Krishna Chaitanya NVV, Sendhil Kumar N (2021) Solar thermal energy technologies and its applications for process heating and power generation—a review. https://doi.org/10.1016/j.jclepro.2020.125296
dc.relationNikbakhti R, Wang X, Hussein AK, Iranmanesh A (2020) Absorption cooling systems—review of various techniques for energy performance enhancement. Alexandria Eng J 59:707–738. https://doi.org/10.1016/J.AEJ.2020.01.036
dc.relationAmaris C, Miranda BC, Balbis-Morejón M (2020) Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system. Therm Sci Eng Prog 20. https://doi.org/10.1016/j.tsep.2020.100684
dc.relationYousefzadeh M, Lenzen M, Tyedmers EK, Hassan Ali SM (2020) An integrated combined power and cooling strategy for small islands. J Clean Prod 276:122840. https://doi.org/10.1016/j.jclepro.2020.122840
dc.relationDispenza A, La Rocca V, Messineo A, Morale M, Panno D (2013) Absorption equipment for energy savings: a case study in Sicily. Sustain Energy Technol Assessments 3:17–26. https://doi.org/10.1016/j.seta.2013.05.002
dc.relationAmaris C, Vallès M, Bourouis M (2018) Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review. Appl Energy 231:826–853. https://doi.org/10.1016/j.apenergy.2018.09.071
dc.relationAmaris C, Bourouis M (2021) Boiling process assessment for absorption heat pumps: a review. Int J Heat Mass Transf 179:121723. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121723
dc.relationAllouhi A, Kousksou T, Jamil A, Bruel P, Mourad Y, Zeraouli Y (2015) Solar driven cooling systems: an updated review. Renew Sustain Energy Rev 44:159–181. https://doi.org/10.1016/J.RSER.2014.12.014
dc.relationBellos E, Tzivanidis C (2017) Energetic and financial analysis of solar cooling systems with single effect absorption chiller in various climates. Appl Therm Eng 126:809–821. https://doi.org/10.1016/j.applthermaleng.2017.08.005
dc.relationAlrwashdeh SS, Ammari H (2019) Life cycle cost analysis of two different refrigeration systems powered by solar energy. Case Stud Therm Eng 16. https://doi.org/10.1016/j.csite.2019.100559
dc.relationGomri R (2013) Simulation study on the performance of solar/natural gas absorption cooling chillers. Energy Convers Manag 65:675–681. https://doi.org/10.1016/J.ENCONMAN.2011.10.030
dc.relationAl-Falahi A, Alobaid F, Epple B (2020) Design and thermo-economic comparisons of large scale solar absorption air conditioning cycles. Case Stud Therm Eng 22:100763. https://doi.org/10.1016/j.csite.2020.100763
dc.relationAl-Ugla AA, El-Shaarawi MAI, Said SAM, Al-Qutub AM (2016) Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia. Renew Sustain Energy Rev 54:1301–1310. https://doi.org/10.1016/j.rser.2015.10.047
dc.relationGhaith FA, Razzaq HH (2017) Performance of solar powered cooling system using parabolic trough collector in UAE. Sustain Energy Technol Assessments 23:21–32. https://doi.org/10.1016/j.seta.2017.08.005
dc.relationRodríguez-Toscano A, Amaris C, Sagastume-Gutiérrez A, Bourouis M (2022) Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia. Case Stud Therm Eng 30:101743. https://doi.org/10.1016/J.CSITE.2021.101743
dc.relationAmaris C, Alvarez ME, Vallès M, Bourouis M (2020) Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi-empirical model and artificial neural networks. Energies 13. https://doi.org/10.3390/en13174313
dc.relationZapata A, Amaris C, Sagastume A, Rodríguez A (2021) CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3. Case Stud Therm Eng 27:101311. https://doi.org/10.1016/J.CSITE.2021.101311
dc.relationOronel C, Amaris C, Vallès M, Bourouis M (2010) Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitratewater). In: Proceedings of 2010 3rd international conference on thermal issues in emerging technologies, theory and applications, ThETA3 2010. pp 217–225. https://doi.org/10.1109/THETA.2010.5766401
dc.relationGarcía A, Bajar costos: reto de la refrigeración solar | ACR Latinoamérica.
dc.relationEPM, Tarifario del mes|Gases del Caribe.
dc.relationIDEAM, Boletín Climatológico Mensual
dc.relationMurcia Ruiz JF (2010) Cambio climático en temperatura, precipitación y humedad relatica para Colombia usando modelos meterolígicos de alta resolución. Ideam. 1–91
dc.relationDe Minas M, Energía Y, De U, Minero P, Caracterización E, De Los E, Residencial S, Terciario CY (2007) República de Colombia
dc.relationWeather Underground, Barranquilla, Colombia weather conditions|weather underground
dc.relationCastro AO (2010) Análisis del potencial energético solar en la Región Caribe para el diseño de un sistema fotovoltaico. INGE CUC. 6:95–102
dc.relationKalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295. https://doi.org/10.1016/J.PECS.2004.02.001
dc.relationBellos E, Tzivanidis C, Symeou C, Antonopoulos KA (2017) Energetic, exergetic and financial evaluation of a solar driven absorption chiller—a dynamic approach. Energy Convers Manag 137:34–48. https://doi.org/10.1016/j.enconman.2017.01.041
dc.relationAsadi J, Amani P, Amani M, Kasaeian A, Bahiraei M (2018) Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Convers Manag 173:715–727. https://doi.org/10.1016/j.enconman.2018.08.013
dc.relationLibotean S, Martín A, Salavera D, Valles M, Esteve X, Coronas A (2008) Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K. J Chem Eng Data 53:2383–2388. https://doi.org/10.1021/je8003035
dc.relationLibotean S, Salavera D, Valles M, Esteve X, Coronas A (2007) Vapor-liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K. J Chem Eng Data 52:1050–1055. https://doi.org/10.1021/je7000045
dc.relationCuenca Y, Salavera D, Vernet A, Teja AS, Vallès M (2014) Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures. Int J Refrig 38:333–340. https://doi.org/10.1016/j.ijrefrig.2013.08.010
dc.relationHaltenberger W (1939) Enthalpy-concentration charts from vapor pressure data. Ind Eng Chem 31:783–786. https://doi.org/10.1021/ie50354a032
dc.relationMcNeely LA (1979) Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans 85:413–434
dc.relationAbsorsistem (2014) Plantas enfriadoras de agua por ciclo de absorción, accionadas por agua caliente
dc.relationElberry MF, Elsayed AA, Teamah MA, Abdel-Rahman AA, Elsafty AF (2018) Performance improvement of power plants using absorption cooling system. Alexandria Eng J 57:2679–2686. https://doi.org/10.1016/j.aej.2017.10.004
dc.relationKhan Z, Khan ZA (2019) Thermodynamic performance of a novel shell-and-tube heat exchanger incorporating paraffin as thermal storage solution for domestic and commercial applications. Appl Therm Eng 160. https://doi.org/10.1016/j.applthermaleng.2019.114007
dc.relationHerold K, Radermacher R, Klein S (2016). Applications of absorption chillers and heat pumps. https://doi.org/10.1201/b19625-14
dc.relationJiang J, Gao W, Wei X, Li Y, Kuroki S (2019) Reliability and cost analysis of the redundant design of a combined cooling, heating and power (CCHP) system. Energy Convers Manag 199:111988. https://doi.org/10.1016/j.enconman.2019.111988
dc.relation328
dc.relation311
dc.rights© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://link.springer.com/chapter/10.1007/978-981-19-3467-4_19
dc.subjectAbsorption chillers
dc.subjectSolar cooling
dc.subjectAmmonia
dc.subjectLithium nitrate
dc.subjectMalls
dc.subjectNatural gas
dc.titlePerformance assessment of a solar/gas driven NH3/LINO3 absorption cooling system for malls
dc.typeCapítulo - Parte de Libro
dc.typehttp://purl.org/coar/resource_type/c_3248
dc.typeText
dc.typeinfo:eu-repo/semantics/bookPart
dc.typehttp://purl.org/redcol/resource_type/CAP_LIB
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/coar/version/c_b1a7d7d4d402bcce


Este ítem pertenece a la siguiente institución