dc.creatorHernández-Fernández, Joaquín
dc.creatorPuello, Esneyder
dc.creatormarquez, edgar
dc.date2023-09-27T22:24:40Z
dc.date2023-09-27T22:24:40Z
dc.date2023-05-11
dc.date.accessioned2023-10-03T20:07:02Z
dc.date.available2023-10-03T20:07:02Z
dc.identifierHernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264. https://doi.org/10.3390/polym15102264
dc.identifierhttps://hdl.handle.net/11323/10521
dc.identifier10.3390/polym15102264
dc.identifier2073-4360
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174332
dc.descriptionThe presence of impurities such as H2S, thiols, ketones, and permanent gases in propylene of fossil origin and their use in the polypropylene production process affect the efficiency of the synthesis and the mechanical properties of the polymer and generate millions of losses worldwide. This creates an urgent need to know the families of inhibitors and their concentration levels. This article uses ethylene green to synthesize an ethylene–propylene copolymer. It describes the impact of trace impurities of furan in ethylene green and how this furan influences the loss of properties such as thermal and mechanical properties of the random copolymer. For the development of the investigation, 12 runs were carried out, each in triplicate. The results show an evident influence of furan on the productivity of the Ziegler–Natta catalyst (ZN); productivity losses of 10, 20, and 41% were obtained for the copolymers synthesized with ethylene rich in 6, 12, and 25 ppm of furan, respectively. PP0 (without furan) did not present losses. Likewise, as the concentration of furan increased, it was observed that the melt flow index (MFI), thermal (TGA), and mechanical properties (tensile, bending, and impact) decreased significantly. Therefore, it can be affirmed that furan should be a substance to be controlled in the purification processes of green ethylene.
dc.format13 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMDPI AG
dc.publisherSwitzerland
dc.relationPolymers
dc.relation1. Hernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [CrossRef]
dc.relation2. Hernández, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef] [PubMed]
dc.relation3. Hernández, J.; Lopez, J. Quantifcation of poisons for Ziegler Natta catalysts and efects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and fame ionization. J. Chromatogr. A 2020, 1614, 460–736. [CrossRef]
dc.relation4. Hernández, J.; Cano, H.; Guerra, Y.; Polo, E.; Ríos, J.; Vivas, R.; Oviedo, J. Identifcation and quantifcation of microplastics in effluents of wastewater treatment plant by differential scanning calorimetry (DSC). Sustainability 2022, 14, 4920. [CrossRef]
dc.relation5. Picó, Y.; Soursou, V.; Alfarhan, A.; El-Sheikh, M.; Barceló, D. First evidence of microplastics occurrence in mixed surface and treated wastewater from two major Saudi Arabian cities and assessment of their ecological risk. J. Hazard. Mater. 2021, 416, 125–747. [CrossRef]
dc.relation6. Mallow, O.; Spacek, S.; Schwarzböck, T.; Fellner, J.; Rechberger, H. A new thermoanalytical method for the quantifcation of microplastics in industrial wastewater. Environ. Pollut. 2020, 259, 113–862. [CrossRef] [PubMed]
dc.relation7. Vajravel, S.; Sirin, S.; Kosourov, S.; Allahverdiyeva, Y. Towards sustainable ethylene production with cyanobacterial artifcial bioflms. Green Chem 2020, 22, 6404–6414. [CrossRef]
dc.relation8. Wang, Z.; Shi, R.; Zhang, T. Three-phase electrochemistry for green ethylene production. Curr. Opin. Electrochem. 2021, 30, 100–789. [CrossRef]
dc.relation9. Penteado, A.; Kim, M.; Godini, H.; Esche, E.; Repke, J. Biogas as a renewable feedstock for green ethylene production via oxidative coupling of methane: Preliminary feasibility study. Chem. Eng. Trans. 2017, 61, 589–594. [CrossRef]
dc.relation10. Du, Z.; Xu, J.; Dong, Q.; Fan, Z. Thermal fractionation and efect of comonomer distribution on the crystal structure of ethylenepropylene copolymers. Polymer 2009, 50, 2510–2515. [CrossRef]
dc.relation11. Rani, M.; Marchesi, C.; Federici, S.; Rovelli, G.; Alessandri, I.; Vassalini, I.; Ducoli, S.; Borgese, L.; Zacco, A.; Bilo, F.; et al. Miniaturized near-infrared (MicroNIR) spectrometer in plastic waste sorting. Materials 2019, 12, 2740. [CrossRef] [PubMed]
dc.relation12. Hernández, J.; Guerra, Y.; Puello, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [CrossRef] [PubMed]
dc.relation13. Hernández, J.; López, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef]
dc.relation14. Mardueño, S.; Barron, J.; Verdin, B.; Mendeleev, E.; Montalvo, R. Química Orgánica Introducción a la Química Heterocíclica; Universidad Autónoma de Nayarit, México: Tepic, Mexico, 2013; p. 181.
dc.relation15. Ruiz, M.L. Tesis Sobre Determinación y Evaluación de las Emisiones de Dioxinas y Furanos en la Producción de Cemento en España; Universidad Complutense de Madrid (UCM): Madrid, Spain, 2007.
dc.relation16. Sarra, A.J. Dioxinas y furanos derivados de la combustión. Rev. Científica De La Univ. De Belgrano 2018, 1, 143–157.
dc.relation17. González, P. Tesis Sobre Contribución al Control de la Contaminación por Cloropropanoles en el Ámbito Alimentario Mediante el Desarrollo de Nuevas Metodologías Analíticas; Universidad de Santiago de Compostela: Santiago, Spain, 2015.
dc.relation18. Pedreschi, F. Tesis Technologies for Furan Mitigation in Highly Consumed Chilean Foods Processed at High Temperatures; Pontifica Universidad Católica de Chile: Santiago, Chile, 2015.
dc.relation19. Cahuaya, M.A. Tesis Sobre la Determinación de Dioxinas y Furanos en Harina de Pescado por Cromatografía de Gases Acoplada a Espectrometría de Masas Triple Cuadrupolo; Universidad Peruana Cayetano Heredia: San Martín de Porres District, Peru, 2021.
dc.relation20. Naccha, L.R. Tesis Sobre Cuantificación de Dioxinas por Cromatografía de Gases; Universidad Autónoma de Nuevo León: San Nicolás de los Garza, México, 2010.
dc.relation21. Cobo, M.I.; Hoyos, A.E.; Aristizábal, B.; de Correa, C.M. Dioxinas y furanos en cenizas de incineración. Rev. Fac. De Ing. Univ. De Antioq. 2004, 32, 26–38.
dc.relation22. Shubhra, Q.T.H.; Alam, A.K.M.M.; Quaiyyum, M.A. Mechanical properties of polypropylene composites: A review. J. Thermoplast. Compos. Mater. 2013, 26, 362–391. [CrossRef]
dc.relation23. Karol, F.J.; Jacobson, F.I. Catalysis and the Unipol Process. Stud. Surf. Sci. Catal. 1986, 25, 323–337.
dc.relation24. Hernández, J.A. Tesis Sobre el Uso de Aditivos Sostenibles en la Estabilización Térmica del Polipropileno en su Proceso de Síntesis; Universidad Politecnica de Valencia: Valencia, Spain, 2018.
dc.relation25. Quinteros, J.G. Tesis sobre Sintesis y Aplicaciones de Ligandos Arsinas. Estudios de Sistemas Catalíticos de Pd y Au; Universidad Nacional de Córdoba: Córdoba, Spain, 2016.
dc.relation26. Treichel, P.M. A Review of: “Phosphine, Arsine, and Stibine Complexes of The Transition Elements. C. A. McAuliffe and W. Levason, Elsevier Scientific Publishing Co., Amsterdam, The Netherlands, 1979, 546 pp, $84.50”. Synth. React. Inorganic Met. Nano-Metal Chem. 1979, 9, 507–508. [CrossRef]
dc.relation27. Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Life-Cycle Assessment of Polypropylene Production in the Gulf Cooperation Council (GCC) Region. Polymers 2021, 13, 3793. [CrossRef]
dc.relation28. Caicedo, C.; Crespo, L.M.; Cruz, H.D.L.; Álvarez, N.A. Propiedades termo-mecánicas del Polipropileno: Efectos durante el reprocesamiento. Ing. Investig. Y Tecnol. 2017, 18, 245–252.
dc.relation29. Caceres, C.A.; Canevarolo, S.V. Correlação entre o Índice de Fluxo à Fusão ea Função da Distribuição de Cisão de Cadeia durante a degradação termo-mecânica do polipropileno. Polimeros 2006, 16, 294–298. [CrossRef]
dc.relation30. Ferg, E.E.; Bolo, L.L. A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases. Polym. Test. 2013, 32, 1452–1459. [CrossRef]
dc.relation31. Yan, H.; Hui-li, Y.; Gui-bao, Z.; Hui-liang, Z.; Ge, G.; Li-song, D. Rheological, Thermal and Mechanical Properties of Biodegradable Poly(propylene carbonate)/Polylactide/Poly(1,2-propylene glycol adipate) Blown Films. Chin. J. Polym. Sci. 2015, 12, 1702–1712. [CrossRef]
dc.relation32. Suraj, K.; Sanjay, L. Evaluation of mechanical properties of polypropylene—Acrylonitrile butadiene styrene blend reinforced with cowrie shell [Cypraeidae] powder. Mater. Proc. 2022, 50, 1644–1652. [CrossRef]
dc.relation33. Chacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. [CrossRef]
dc.relation34. Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 1708. [CrossRef]
dc.relation35. Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]
dc.relation36. Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [CrossRef]
dc.relation37. Joaquin, H.F.; Juan, L.M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [CrossRef]
dc.relation38. Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [CrossRef]
dc.relation39. Hernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098. [CrossRef] [PubMed]
dc.relation40. Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene o
dc.relation13
dc.relation1
dc.relation10
dc.relation15
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/2073-4360/15/10/2264
dc.subjectFuran
dc.subjectGreen ethylene
dc.subjectZiegler–Natta catalyst
dc.subjectRandom copolymer
dc.subjectCatalyst
dc.subjectMechanical properties
dc.subjectMelt flow index
dc.titleFuran as impurity in green ethylene and its effects on the productivity of random ethylene–propylene copolymer synthesis and its thermal and mechanical properties
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución