dc.creator | Akinyemi, Segun Ajayi | |
dc.creator | Nyakuma, Bemgba Bevan | |
dc.creator | Jauro, Aliyu | |
dc.creator | Olanipekun, Timileyin | |
dc.creator | Mudzielwana, Rabelani | |
dc.creator | Gitari, Wilson | |
dc.creator | Saikia, Binoy | |
dc.creator | Dotto, Guilherme Luiz | |
dc.creator | Hower, J. C | |
dc.creator | Silva, Luis F. O | |
dc.date | 2021-09-03T17:05:05Z | |
dc.date | 2021-09-03T17:05:05Z | |
dc.date | 2021-07-14 | |
dc.date | 2023-07-14 | |
dc.date.accessioned | 2023-10-03T20:06:58Z | |
dc.date.available | 2023-10-03T20:06:58Z | |
dc.identifier | 00162361 | |
dc.identifier | https://hdl.handle.net/11323/8626 | |
dc.identifier | https://doi.org/10.1016/j.fuel.2021.121468 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174319 | |
dc.description | The rare earth elements (REE) possess a beneficial combination of chemical and physical properties, making them valuable for most advanced branches of engineering and technology. Alternative sources of REE are desirable due to limited reserves of conventional REE containing minerals over the world combined with disproportionate supply over demand in the commodity markets. This study investigated the occurrence of REE and carbon nanotubes (CNTs) in Cretaceous Nigerian coals for prospective industrial applications. Results show that the coals’ crystalline mineral matter comprises quartz, kaolinite, and illite with minor quantities of feldspar, hematite, magnetite, calcite, dolomite, which indicate detrital mineral origins. Elemental relationships (such as Al2O3/TiO2, Cr/Th vs. Sc/Th, and Co/Th vs. La/Sc) suggest sediment-source regions with mafic, intermediate or felsic compositions. REE are either strongly fractionated or characterized by light-enrichment along with outlook coefficient (Coutl) values that suggest the coals are prospective substitute sources for REE and yttrium (REY) recovery. Several minerals including jarosite, goethite, epsomite, ferrohexahydrite, natrojarosite, rozenite, and gypsum were detected in trace amounts. REE mineral phases were not identified but only amorphous phases containing Ce, La, Nd, Th, Pr, Sm, Gd, Tb, Dy, Ho, and Hf. Maceral composition (high vitrinite), presence of iron-containing minerals (hematite and magnetite), high carbon contents, reduced volatile matter and low ash content favoured the formation of naturally occurring multi-walled carbon nanotube (MWCNTs) structures in Maiganga (MGA) coal. Hence, the present study is the first scientific report on the naturally occurring REEs and MWC nanophases in Cretaceous coals from the Benue Trough. © 2021 | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Fuel | |
dc.relation | [1] Seredin VV, Finkelman RB. Metalliferous coals: a review of the main genetic and
geochemical types. Int J Coal Geol 2008;76(4):253–89. | |
dc.relation | [2] Seredin VV, Dai S. Coal deposits as potential alternative sources for lanthanides
and yttrium. Int J Coal Geol 2012;94:67–93. | |
dc.relation | [3] Seredin VV, Dai S, Sun Y, Chekryzhov IY. Coal deposits as promising sources of
rare metals for alternative power and energy-efficient technologies. Appl
Geochem 2013;31:1–11. | |
dc.relation | [4] Saikia BK, Ward CR, Oliveira ML, Hower JC, De Leao F, Johnston MN, et al.
Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal derived fly ashes from Assam (North-east India): a multi-faceted analytical
approach. Int J Coal Geol 2015;137:19–37. | |
dc.relation | [5] Taggart RK, Hower JC, Dwyer GS, Hsu-Kim H. Trends in the rare earth element
content of US-based coal combustion fly ashes. Environ Sci Technol 2016;50(11):
5919–26. | |
dc.relation | [6] Hower JC, Eble CF, Dai S, Belkin HE. Distribution of rare earth elements in
eastern Kentucky coals: indicators of multiple modes of enrichment? Int J Coal
Geol 2016;160:73–81. | |
dc.relation | [7] Hower JC, Granite EJ, Mayfield DB, Lewis AS, Finkelman RB. Notes on
contributions to the science of rare earth element enrichment in coal and coal
combustion byproducts. Minerals 2016;6(2):32. | |
dc.relation | [8] Arbuzov S, Chekryzhov IY, Finkelman R, Sun Y, Zhao C, Il’enok S, et al.
Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb,
Lu) with examples from coals of north Asia (Siberia, Russian far East, North
China, Mongolia, and Kazakhstan). Int J Coal Geol 2019;206:106–20. | |
dc.relation | [9] Lin R, Howard BH, Roth EA, Bank TL, Granite EJ, Soong Y. Enrichment of rare
earth elements from coal and coal by-products by physical separations. Fuel
2017;200:506–20. | |
dc.relation | [10] Humphries M. Rare earth elements: the global supply chain. Congressional
Research Service. Washington: The Library of Congress; 2013. | |
dc.relation | [11] Pan J, Zhou C, Tang M, Cao S, Liu C, Zhang N, et al. Study on the modes of
occurrence of rare earth elements in coal fly ash by statistics and a sequential
chemical extraction procedure. Fuel 2019;237:555–65. | |
dc.relation | [12] Haque N, Hughes A, Lim S, Vernon C. Rare earth elements: overview of mining,
mineralogy, uses sustainability and environmental impact. Resources 2014;3(4):
614–35. | |
dc.relation | [13] Dai S, Xie P, Jia S, Ward CR, Hower JC, Yan X, et al. Enrichment of U-Re-V-Cr-Se
and rare earth elements in the Late Permian coals of the Moxinpo Coalfield,
Chongqing, China: genetic implications from geochemical and mineralogical
data. Ore Geol Rev 2017;80:1–17. | |
dc.relation | [14] Asian Metals. Rare earth minerals and classification; 2020. Available from:
http://metalpedia.asianmetal.com. [Accessed 23rd September 2020]. | |
dc.relation | [15] Koltun P, Tharumarajah A. Life cycle impact of rare earth elements. Int Scholarly
Res Notices 2014;2014. | |
dc.relation | [16] Seredin V. A new method for primary evaluation of the outlook for rare earth
element ores. Geol Ore Deposits 2010;52(5):428–33. | |
dc.relation | [17] Van Gosen BS, Verplanck PL, Seal RR, Long KR, Gambogi J. Rare-earth elements
of Critical mineral resources of the United States-Economic and environmental
geology and prospects for future supply. In: Schulz KJ, DeYoung JHJ, Seal RR,
Bradley DC, editors. US Geological Survey Professional Paper 1802. United States
of America (USA): US Geological Survey; 2017. | |
dc.relation | [18] Kanazawa Y, Kamitani M. Rare earth minerals and resources in the world. J Alloy
Compd 2006;408:1339–43. | |
dc.relation | [19] US DoE. Rare earth elements from coal and coal by-products; 2017. Available
from: https://www.energy.gov/sites/prod/files/2018/01/f47/EXEC-2014-
000442% [Accessed 10th September 2020]. | |
dc.relation | [20] Bauer D, Diamond D, Li J, McKittrick M, Sandalow D, Telleen P. Critical Materials
Strategy 2011. Available from: https://www.energy.gov/sites/prod/files/DOE_
CMS2011_FINAL_Full. [Accessed 12th September 2020]. | |
dc.relation | [21] Preston J, Cole P, Craig W, Feather A. The recovery of rare earth oxides from a
phosphoric acid by-product. Part 1: Leaching of rare earth values and recovery of
a mixed rare earth oxide by solvent extraction. Hydrometallurgy 1996;41(1):
1–19. | |
dc.relation | [22] Goldschmidt V. Rare elements in coal ashes. Ind Eng Chem 1935;27(9):1100–2. | |
dc.relation | [23] Schofield A, Haskin L. Rare-earth distribution patterns in eight terrestrial
materials. Geochim Cosmochim Acta 1964;28(4):437–46. | |
dc.relation | [24] Zubovic P, Stadnichenko T, Sheffey NB. Distribution of minor elements in coals of
the Appalachian region. US Government Printing Office; 1966. | |
dc.relation | [25] Finkelman RB, Stanton RW. Identification and significance of accessory minerals
from bituminous coal. Fuel 1978;57(12):763–8. | |
dc.relation | [26] Hood MM, Taggart RK, Smith RC, Hsu-Kim H, Henke KR, Graham U, et al. Rare
earth element distribution in fly ash derived from the Fire Clay coal, Kentucky.
Coal Combust Gasification Prod 2017;9(1):22–33. | |
dc.relation | [27] Honaker RQ, Zhang W, Yang X, Rezaee M. Conception of an integrated flowsheet
for rare earth elements recovery from coal coarse refuse. Miner Eng 2018;122:
233–40. | |
dc.relation | [28] Hower JC, Groppo JG, Henke KR, Graham UM, Hood MM, Joshi P, et al. Ponded
and landfilled fly ash as a source of rare earth elements from a Kentucky power
plant. Coal Combust Gasification Prod 2017;9(1):1–21. | |
dc.relation | [29] King JF, Taggart RK, Smith RC, Hower JC, Hsu-Kim H. Aqueous acid and alkaline
extraction of rare earth elements from coal combustion ash. Int J Coal Geol 2018;
195:75–83. | |
dc.relation | [30] Taggart RK, Hower JC, Hsu-Kim H. Effects of roasting additives and leaching
parameters on the extraction of rare earth elements from coal fly ash. Int J Coal
Geol 2018;196:106–14. | |
dc.relation | [31] Smith RC, Taggart RK, Hower JC, Wiesner MR, Hsu-Kim H. Selective recovery of
rare earth elements from coal fly ash leachates using liquid membrane processes.
Environ Sci Technol 2019;53(8):4490–9. | |
dc.relation | [32] Vass CR, Noble A, Ziemkiewicz PF. The occurrence and concentration of rare
earth elements in acid mine drainage and treatment byproducts. Part 2: regional
survey of northern and central Appalachian coal basins. Mining Metal Explor
2019;36(5):917–29. | |
dc.relation | [33] Zhang W, Honaker RQ. Rare earth elements recovery using staged precipitation
from leachate generated from coarse coal refuse. Int J Coal Geol 2018;195:
189–99. | |
dc.relation | [34] Zhang W, Honaker R. Process development for the recovery of rare earth elements
and critical metals from an acid mine leachate. Miner Eng 2020;153:106382. | |
dc.relation | [35] Li D, Tang Y, Deng T, Chen K, Liu D. Geochemistry of rare earth elements in
coal—a case study from Chongqing, southwestern China. Energy Explor Exploit
2008;26(6):355–62. | |
dc.relation | [36] Kolker A, Scott C, Hower JC, Vazquez JA, Lopano CL, Dai S. Distribution of rare
earth elements in coal combustion fly ash, determined by SHRIMP-RG ion
microprobe. Int J Coal Geol 2017;184:1–10. | |
dc.relation | [37] Montross S, Circe AV, Falcon A, Poston J, Mark M. Characterization of rare earth
element minerals in coal utilization by-products and associated clay deposits from
Appalachian Basin coal resources. In: September -, ed. 34th International
Pittsburgh Coal Conference Pittsburgh, Pennsylvania, USA.: PCC; 2017. | |
dc.relation | [38] Hower JC, Cantando E, Eble CF, Copley GC. Characterization of stoker ash from
the combustion of high-lanthanide coal at a Kentucky bourbon distillery. Int J
Coal Geol 2019;213:103260. | |
dc.relation | [39] Hower JC, Qian D, Briot NJ, Santillan-Jimenez E, Hood MM, Taggart RK, et al.
Nano-scale rare earth distribution in fly ash derived from the combustion of the
fire clay coal, Kentucky. Minerals 2019;9(4):206. | |
dc.relation | [40] Hower JC, Qian D, Briot NJ, Henke KR, Hood MM, Taggart RK, et al. Rare earth
element associations in the Kentucky State University stoker ash. Int J Coal Geol
2018;189:75–82. | |
dc.relation | [41] Dai S, Finkelman RB. Coal as a promising source of critical elements: progress and
future prospects. Int J Coal Geol 2018;186:155–64. | |
dc.relation | [42] Silva LF, Crissien TJ, Schneider IL, Blanco EP, ´ Sampaio CH. Nanometric particles
of high economic value in coal fire region: opportunities for social improvement.
J Cleaner Prod 2020;256:120480. | |
dc.relation | [43] Silva LF, Crissien TJ, Sampaio CH, Hower JC, Dai S. Occurrence of carbon
nanotubes and implication for the siting of elements in selected anthracites. Fuel
2020;263:116740. | |
dc.relation | [44] Hower JC, Groppo JG, Joshi P, Preda DV, Gamliel DP, Mohler DT, et al.
Distribution of lanthanides, yttrium, and scandium in the pilot-scale beneficiation
of fly ashes derived from eastern Kentucky coals. Minerals 2020;10(2):105. | |
dc.relation | [45] Hower JC, Dai S, Seredin VV, Zhao L, Kostova IJ, Silva LF, et al. A note on the
occurrence of yttrium and rare earth elements in coal combustion products. Coal
Combust Gasification Prod 2013;5(2):39–47. | |
dc.relation | [46] Blissett R, Smalley N, Rowson N. An investigation into six coal fly ashes from the
United Kingdom and Poland to evaluate rare earth element content. Fuel 2014;
119:236–9. | |
dc.relation | [47] Dai S, Zhao L, Hower JC, Johnston MN, Song W, Wang P, et al. Petrology,
mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant,
Inner Mongolia, China, with emphasis on the distribution of rare earth elements.
Energy Fuels 2014;28(2):1502–14. | |
dc.relation | [48] Liu J, Dai S, He X, Hower JC, Sakulpitakphon T. Size-dependent variations in fly
ash trace element chemistry: examples from a Kentucky power plant and with
emphasis on rare earth elements. Energy Fuels 2017;31(1):438–47. | |
dc.relation | [49] Fatoye FB, Gideon YB. Appraisal of the economic geology of Nigerian coal
resources. J Environ Earth Sci 2013;3(11):25–31. | |
dc.relation | [50] Benkhelil J. The origin and evolution of the Cretaceous Benue Trough (Nigeria).
J African Earth Sci (and the Middle East) 1989;8(2–4):251–82. | |
dc.relation | [51] Petters SW. Central west African Cretaceous-Tertiary benthic foraminifera and
stratigraphy. Palaeontographica Abteilung A 1982:1–104. | |
dc.relation | [52] Obaje N, Abaa S, Najime T, Suh C. Economic geology of Nigerian coal resources-a
brief review. Africa Geosci Rev 1999;6:71–82. | |
dc.relation | [53] Olade M. Evolution of Nigeria’s Benue Trough (Aulacogen): a tectonic model.
Geol Mag 1975;112(6):575–83. | |
dc.relation | [54] Nwajide C. Cretaceous sedimentation and paleogeography of the central Benue
Trough. The Benue Trough structure and Evolution International Monograph
Series, Braunschweig 1990:19-38. | |
dc.relation | [55] Idowu J, Ekweozor C. Petroleum potential of Cretaceous shales in the Upper
Benue trough, Nigeria. J Petrol Geol 1993;16(3):249–64. | |
dc.relation | [56] Murat R. Stratigraphy and paleogeography of the Cretaceous and Lower Tertiary
in southern Nigeria. African Geol 1972;1(1):251–66. | |
dc.relation | [57] Reyment RA. Aspects of the geology of Nigeria: the stratigraphy of the Cretaceous
and Cenozoic deposits. Ibadan University Press; 1965. | |
dc.relation | [58] Nwachukwu S. The tectonic evolution of the southern portion of the Benue
Trough, Nigeria. Geol Magazine 1972;109(5):411–9. | |
dc.relation | [59] Obaje NG. Geology and mineral resources of Nigeria. Berlin, Germany: Springer,
Berlin, Heidelberg; 2009. | |
dc.relation | [60] ASTM International. ASTM D2013/D2013M-12 Standard Practice for preparing
coal samples for analysis. West Conshohocken, PA, USA: ASTM International;
2012. | |
dc.relation | [61] ASTM International. ASTM D7582–12 standard test methods for proximate
analysis of coal and coke by macro thermogravimetric analysis. West
Conshohocken, PA, USA: ASTM International; 2012. | |
dc.relation | [62] Standard A. D4239-12. Test Method for Sulfur in the Analysis Sample of Coal and
Coke Using High-Temperature Tube Furnace Combustion ASTM International,
West Conshohocken, PA 2012. | |
dc.relation | [63] ASTM International. ASTM D3176–15 standard practice for ultimate analysis of
coal and coke. West Conshohocken, PA, USA: ASTM International; 2015. | |
dc.relation | [64] ICCP. The new vitrinite classification (ICCP System 1994). Fuel 1998;77(5):
349–58. | |
dc.relation | [65] ICCP. The new inertinite classification (ICCP System 1994). Fuel 2001;80(4):
459–71. | |
dc.relation | [66] Pickel W, Kus J, Flores D, Kalaitzidis S, Christanis K, Cardott B, et al.
Classification of liptinite–ICCP System 1994. Int J Coal Geol 2017;169:40–61. | |
dc.relation | [67] Sýkorova ´ I, Pickel W, Christanis K, Wolf M, Taylor G, Flores D. Classification of
huminite—ICCP System 1994. Int J Coal Geol 2005;62(1–2):85–106. | |
dc.relation | [68] Akinyemi S, Gitari W, Akinlua A, Petrik L. Mineralogy and geochemistry of sub bituminous coal and its combustion products from Mpumalanga Province, South
Africa. Analytical Chemistry. InTech; 2012. | |
dc.relation | [69] Cutruneo CM, Oliveira ML, Ward CR, Hower JC, de Brum IA, Sampaio CH, et al.
A mineralogical and geochemical study of three Brazilian coal cleaning rejects:
demonstration of electron beam applications. Int J Coal Geol 2014;130:33–52. | |
dc.relation | [70] Speight JG. The chemistry and technology of coal. Third Edition ed. USA: CRC
Press; 2012. | |
dc.relation | [71] Ryemshak SA, Jauro A. Proximate analysis, rheological properties and
technological applications of some Nigerian coals. Int J Ind Chem 2013;4(1):7. | |
dc.relation | [72] Obaje N, Ligouis B. Petrographic evaluation of the depositional environments of
the Cretaceous Obi/Lafia coal deposits in the Benue Trough of Nigeria. J Afr Earth
Sc 1996;22(2):159–71. | |
dc.relation | [73] Nyakuma B, Jauro A, Oladokun O, Bello A, Alkali H, Modibo M, et al.
Physicochemical, mineralogical, and thermogravimetric properties of newly
discovered Nigerian coals. Pet Coal 2018;60(4):641–9. | |
dc.relation | [74] Nyakuma BB, Jauro A. Chemical and pyrolytic thermogravimetric
characterization of nigerian bituminous coals. GeoScience Eng 2016;62(3):1–5. | |
dc.relation | [75] Yossifova MG, Eskenazy GM, Valˇceva SP. Petrology, mineralogy, and
geochemistry of submarine coals and petrified forest in the Sozopol Bay, Bulgaria.
Int J Coal Geol 2011;87(3–4):212–25. | |
dc.relation | [76] Hackley PC, SanFilipo JR. Organic petrology and geochemistry of Eocene Suzak
bituminous marl, north-central Afghanistan: depositional environment and
source rock potential. Mar Pet Geol 2016;73:572–89. | |
dc.relation | [77] Fu B, Liu G, Liu Y, Cheng S, Qi C, Sun R. Coal quality characterization and its
relationship with the geological process of the Early Permian Huainan coal
deposits, southern North China. J Geochem Explor 2016;166:33–44. | |
dc.relation | [78] Quaderer A, Mastalerz M, Schimmelmann A, Drobniak A, Bish D, Wintsch R.
Dike-induced thermal alteration of the Springfield Coal Member (Pennsylvanian)
and adjacent clastic rocks, Illinois Basin, USA. Int J Coal Geol 2016;166:108–17. | |
dc.relation | [79] Burwash R, Culbert R. Multivariate geochemical and mineral patterns in the
Precambrian basement of western Canada. Can J Earth Sci 1976;13(1):1–18. | |
dc.relation | [80] Jarrar G, Baumann A, Wachendorf H. Age determinations in the Precambrian
basement of the Wadi Araba area, southwest Jordan. Earth Planet Sci Lett 1983;
63(2):292–304. | |
dc.relation | [81] Dill H. A review of mineral resources in Malawi: with special reference to
aluminium variation in mineral deposits. J Afr Earth Sc 2007;47(3):153–73. | |
dc.relation | [82] Yossifova MG. Mineral and inorganic chemical composition of the Pernik coal,
Bulgaria. Int J Coal Geol 2007;72(3–4):268–92. | |
dc.relation | [83] Ward CR. Analysis and significance of the mineral matter in coal seams. Int J Coal
Geol 2002;50(1–4):135–68. | |
dc.relation | [84] Hower JC, Eble CF, O’Keefe JM, Dai S, Wang P, Xie P, et al. Petrology,
palynology, and geochemistry of grey hawk coal (early Pennsylvanian,
Langsettian) in eastern Kentucky, USA. Minerals 2015;5(3):592–622. | |
dc.relation | [85] Dai S, Ren D, Chou C-L, Finkelman RB, Seredin VV, Zhou Y. Geochemistry of trace
elements in Chinese coals: a review of abundances, genetic types, impacts on
human health, and industrial utilization. Int J Coal Geol 2012;94:3–21. | |
dc.relation | [86] Hayashi K-I, Fujisawa H, Holland HD, Ohmoto H. Geochemistry of~ 1.9 Ga
sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim
Acta 1997;61(19):4115–37. | |
dc.relation | [87] Dai S, Liu J, Ward CR, Hower JC, Xie P, Jiang Y, et al. Petrological, geochemical,
and mineralogical compositions of the low-Ge coals from the Shengli Coalfield,
China: a comparative study with Ge-rich coals and a formation model for coal hosted Ge ore deposit. Ore Geol Rev 2015;71:318–49. | |
dc.relation | [88] Finkelman RB. Modes of occurrence of environmentally-sensitive trace elements
in coal. Environmental aspects of trace elements in coal. Springer; 1995. p. 24–50. | |
dc.relation | [89] Finkelman RB. Potential health impacts of burning coal beds and waste banks. Int
J Coal Geol 2004;59(1–2):19–24. | |
dc.relation | [90] Riley K, French D, Farrell O, Wood R, Huggins F. Modes of occurrence of trace
and minor elements in some Australian coals. Int J Coal Geol 2012;94:214–24. | |
dc.relation | [91] Dai S, Li D, Ren D, Tang Y, Shao L, Song H. Geochemistry of the late Permian No.
30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low temperature hydrothermal fluid. Appl Geochem 2004;19(8):1315–30. | |
dc.relation | [92] Jochum KP, Weis U, Schwager B, Stoll B, Wilson SA, Haug GH, et al. Reference
values following ISO guidelines for frequently requested rock reference materials.
Geostand Geoanal Res 2016;40(3):333–50. | |
dc.relation | [93] Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW. GeoReM: a new
geochemical database for reference materials and isotopic standards. Geostand
Geoanal Res 2005;29(3):333–8. | |
dc.relation | [94] Ketris M, Yudovich YE. Estimations of Clarkes for Carbonaceous biolithes: world
averages for trace element contents in black shales and coals. Int J Coal Geol
2009;78(2):135–48. | |
dc.relation | [95] Dai S, Ren D, Tang Y, Yue M, Hao L. Concentration and distribution of elements in
Late Permian coals from western Guizhou Province, China. Int J Coal Geol 2005;
61(1–2):119–37. | |
dc.relation | [96] Ren D, Zhao F, Wang Y, Yang S. Distributions of minor and trace elements in
Chinese coals. Int J Coal Geol 1999;40(2–3):109–18. | |
dc.relation | [97] Crowley SS, Stanton RW, Ryer TA. The effects of volcanic ash on the maceral and
chemical composition of the C coal bed, Emery Coal Field, Utah. Org Geochem
1989;14(3):315–31. | |
dc.relation | [98] Hower JC, Ruppert LF, Eble CF. Lanthanide, yttrium, and zirconium anomalies in
the Fire Clay coal bed, Eastern Kentucky. Int J Coal Geol 1999;39(1–3):141–53. | |
dc.relation | [99] Dai S, Zeng R, Sun Y. Enrichment of arsenic, antimony, mercury, and thallium in a
Late Permian anthracite from Xingren, Guizhou, Southwest China. Int J Coal Geol
2006;66(3):217–26. | |
dc.relation | [100] Burger K, Zhou Y, Tang D. Synsedimentary volcanic-ash-derived illite tonsteins in
Late Permian coal-bearing formations of southwestern China. Int J Coal Geol
1990;15(4):341–56. | |
dc.relation | [101] Burger K, Bandelow FK, Bieg G. Pyroclastic kaolin coal–tonsteins of the Upper
Carboniferous of Zonguldak and Amasra, Turkey. Int J Coal Geol 2000;45(1):
39–53. | |
dc.relation | [102] Zhao L, Ward CR, French D, Graham IT. Mineralogical composition of Late
Permian coal seams in the Songzao Coalfield, southwestern China. Int J Coal Geol
2013;116:208–26. | |
dc.relation | [103] Ward CR. Mineral matter in low-rank coals and associated strata of the Mae Moh
Basin, northern Thailand. Int J Coal Geol 1991;17(1):69–93. | |
dc.relation | [104] Saikia BK, Ward CR, Oliveira ML, Hower JC, Baruah BP, Braga M, et al.
Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals.
Int J Coal Geol 2014;121:26–34. | |
dc.relation | [105] Finkelman RB. Modes of occurrence of potentially hazardous elements in coal:
levels of confidence. Fuel Process Technol 1994;39(1–3):21–34. | |
dc.relation | [106] Swaine DJ. Why trace elements are important. Fuel Process Technol 2000;65:
21–33. | |
dc.relation | [107] Bouska V, Pesek J, Sykorova I. Probable modes of occurrence of chemical
elements in coal. Acta Montana 2000;117:53–90. | |
dc.relation | [108] Zhao C, Duan D, Li Y, Zhang J. Rare earth elements in No. 2 coal of Huangling
mine, Huanglong coalfield, China. Energy Explor Exploitation 2012;30(5):
803–18. | |
dc.relation | [109] Hower JC, Eble CF, Backus JS, Xie P, Liu J, Fu B, et al. Aspects of rare earth
element enrichment in Central Appalachian coals. Appl Geochem 2020;120:
104676. | |
dc.relation | [110] Mao J, Lehmann B, Du A, Zhang G, Ma D, Wang Y, et al. Re-Os dating of
polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of
South China and its geologic significance. Econ Geol 2002;97(5):1051–61. | |
dc.relation | [111] Sholkovitz ER. The aquatic chemistry of rare earth elements in rivers and
estuaries. Aquat Geochem 1995;1(1):1–34. | |
dc.relation | [112] Pourret O, Gruau G, Dia A, Davranche M, Molenat J. Colloidal control on the
distribution of rare earth elements in shallow groundwaters. Aquat Geochem
2010;16(1):31. | |
dc.relation | [113] Silva LF, Santosh M, Schindler M, Gasparotto J, Dotto GL, Oliveira ML, et al.
Nanoparticles in fossil and mineral fuel sectors and their impact on the
environment and human health: a review and perspective. Gondwana Res 2021. | |
dc.relation | [114] Silva LF, Pinto D, Dotto GL, Hower JC. Nanomineralogy of evaporative
precipitation of efflorescent compounds from coal mine drainage. Geosci Front
2020. | |
dc.relation | [115] Silva LF, Pinto D, Dotto GL. A tool for the realistic study of nanoparticulate coal
rejects. J Cleaner Prod 2021;278:121916. | |
dc.relation | [116] Silva LF, Oliveira ML, Philippi V, Serra C, Dai S, Xue W, et al. Geochemistry of
carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County,
Kentucky. Int J Coal Geol 2012;94:206–13. | |
dc.relation | [117] Silva L, Sampaio C, Guedes A, De Vallejuelo S-F-O, Madariaga J. Multianalytical
approach to the characterisation of minerals associated with coals and the
diagnosis of their potential risk by using combined instrumental
microspectroscopic techniques and thermodynamic speciation. Fuel 2012;94:
52–63. | |
dc.relation | [118] Quispe D, P´erez-Lopez ´ R, Silva LF, Nieto JM. Changes in the mobility of
hazardous elements during coal combustion in Santa Catarina power plant
(Brazil). Fuel 2012;94:495–503. | |
dc.relation | [119] Akinyemi SA, Gitari WM, Petrik LF, Nyakuma BB, Hower JC, Ward CR, et al.
Environmental evaluation and nano-mineralogical study of fresh and unsaturated
weathered coal fly ashes. Sci Total Environ 2019;663:177–88. | |
dc.relation | [120] Silva L, Oliveira M. Nanominerals and ultrafine particles from Brazilian coal fires.
Coal and peat fires: a global perspective. Amsterdam: Elsevier; 2015. p. 37–55. | |
dc.relation | [121] Eskenazy GM. Rare earth elements and yttrium in lithotypes of Bulgarian coals.
Org Geochem 1987;11(2):83–9. | |
dc.relation | [122] Eskenazy GM. Rare earth elements in a sampled coal from the Pirin deposit,
Bulgaria. Int J Coal Geol 1987;7(3):301–14. | |
dc.relation | [123] Eskenazy G. Aspects of the geochemistry of rare earth elements in coal: an
experimental approach. Int J Coal Geol 1999;38(3–4):285–95. | |
dc.relation | [124] Birk D, White JC. Rare earth elements in bituminous coals and underclays of the
Sydney Basin, Nova Scotia: Element sites, distribution, mineralogy. Int J Coal
Geol 1991;19(1–4):219–51. | |
dc.relation | [125] Laudal DA, Benson SA, Addleman RS, Palo D. Leaching behaviour of rare earth
elements in Fort Union lignite coals of North America. Int J Coal Geol 2018;191:
112–24. | |
dc.relation | [126] Oliveira ML, Pinto D, Tutikian BF, da Boit K, Saikia BK, Silva LF. Pollution from
uncontrolled coal fires: continuous gaseous emissions and nanoparticles from coal
mines. J Cleaner Prod 2019;215:1140–8. | |
dc.relation | [127] Oliveira ML, Da Boit K, Schneider IL, Teixeira EC, Borrero TJC, Silva LF. Study of
coal cleaning rejects by FIB and sample preparation for HR-TEM: mineral surface
chemistry and nanoparticle-aggregation control for health studies. J Cleaner Prod
2018;188:662–9. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | Fuel | |
dc.source | https://www.sciencedirect.com/science/article/pii/S0016236121013478?via%3Dihub | |
dc.subject | Cretaceous coal | |
dc.subject | Multi-walled carbon nanotubes | |
dc.subject | Nano-mineralogy | |
dc.subject | Nano-particles | |
dc.subject | Rare earth elements | |
dc.subject | Trace elements | |
dc.title | Rare earth elements study of cretaceous coals from benue trough basin, Nigeria: modes of occurrence for greater sustainability of mining | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |