dc.creatorGrimaldo Guerrero, John William
dc.creatorSilva Ortega, Jorge I
dc.creatorCandelo Becerra, John Edwin
dc.creatorBalceiro-Alvarez, Bernardo
dc.creatorCabrera-Anaya, Omar
dc.date2022-01-16T20:33:40Z
dc.date2022-01-16T20:33:40Z
dc.date2021
dc.date.accessioned2023-10-03T20:06:48Z
dc.date.available2023-10-03T20:06:48Z
dc.identifier2146-4553
dc.identifierhttps://hdl.handle.net/11323/8975
dc.identifierhttps://doi.org/10.32479/ijeep.11386
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174290
dc.descriptionThe electricity demand forecast allows countries to establish long-term plans and objectives for identifying gaps, selecting strategies, and designing the electric power system's architecture. Traditional models use GDP as the primary variable to forecast the electricity demand. The work presents an analysis of the relationship between electricity demand and economic growth, using regression methods with one or more variables. The GDP and sectoral GDP data was provided by Banco de la República de Colombia. The results validate the traditional model and offer alternative models that can relate the economy's different sectors with the electricity demand.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAlfalah, O., Alhumaidan, L., Baglan, D. (2020), The demand for electricity in Kuwait: Acointegration analysis. International Journal of Energy Economics and Policy, 10(6), 9-13.
dc.relationAndrade-Becerra, A., Marenco-Rua, S., Grimaldo-Guerrero, J.W., Noriega-Angarita, E.M., Silva-Ortega, J.I. (2019), Economic assessment of changes in the regulation of the transmission activity in Colombia. Journal of Engineering Science and Technology Review, 12(6), 11-16.
dc.relationBRC. (2021), Producto Interno Bruto (PIB), Banco de la República (Banco Central de Colombia). Available from: https://www.banrep.gov.co/ es/estadisticas/producto-interno-bruto-pib.
dc.relationCarlini, E.M., Schroeder, R., Birkebæk, J.M., Massaro, F. (2019), EU transition in power sector: How RES affects the design and operations of transmission power systems. In Electric Power Systems Research, 169, 74-91.
dc.relationDerksen, S., Keselman, H.J. (1992), Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265-282.
dc.relationFerguson, R., Wilkinson, W., Hill, R. (2000), Electricity use and economic development. Energy Policy, 28(13), 923-934.
dc.relationGhalehkhondabi, I., Ardjmand, E., Weckman, G.R., Young, W.A. (2017), An overview of energy demand forecasting methods published in 2005-2015. Energy Systems, 8(2), 411-447.
dc.relationGironès, V.C., Moret, S., Maréchal, F., Favrat, D. (2015), Strategic energy planning for large-scale energy systems: A modelling framework to aid decision-making. Energy, 90(1), 173-186.
dc.relationGünay, M.E. (2016), Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy, 90, 92-101.
dc.relationHanusz, Z., Tarasinska, J., Zielinski, W. (2016), Shapiro-wilk test with known mean. Revstat Statistical Journal, 14(1), 89-100.
dc.relationIvan Silva, J., Valencia, G., Cardenas Escorcia, Y., Silva-Ortega, J.I., Cervantes-Bolivar, B., Isaac-Millan, I.A., Cardenas-Escorcia, Y., Valencia-Ochoa, G. (2018), Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system. Chemical Engineering Transactions, 67, 787-792.
dc.relationKery, M., Royle, J. (2016), Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS. Vol. 2. Tamil Nadu: Dynamic and Advanced.
dc.relationLey 1715. (2014), Available from: http://www.secretariasenado.gov.co/ senado/basedoc/ley_1715_2014.html.
dc.relationLi, Y., Jones, B. (2020), The use of extreme value theory for forecasting long-term substation maximum electricity demand. IEEE Transactions on Power Systems, 35(1), 128-139.
dc.relationLumbreras, S., Ramos, A. (2016), The new challenges to transmission expansion planning. Survey of recent practice and literature review. In Electric Power Systems Research, 134, 19-29.
dc.relationMaaouane, M., Zouggar, S., Krajačić, G., Zahboune, H. (2021), Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods. Energy, 225, 120270.
dc.relationMadrigal, J.A., Eras, J.J.C., Herrera, H.H., Santos, V.S., Morejón, M.B. (2018), Energy planning for fuel oil saving in an industrial laundry. Ingeniare, 26(1), 86-96.
dc.relationMoradijoz, M., Moghaddam, M.P., Haghifam, M.R. (2018), A flexible active distribution system expansion planning model: A risk-based approach. Energy, 145, 442-457.
dc.relationNarisetty, N.N. (2019), Bayesian model selection for high-dimensional data. In: Handbook of Statistics. Amsterdam, Netherlands: Elsevier.
dc.relationNepal, R., Paija, N. (2019), Energy security, electricity, population and economic growth: The case of a developing South Asian resourcerich economy. Energy Policy, 132, 771-781.
dc.relationNiharika, V.S., Mukherjee, V. (2016), Transmission expansion planning: A review. 2016 International Conference on Energy Efficient Technologies for Sustainability, 2016, 350-355.
dc.relationOree, V., Sayed Hassen, S.Z., Fleming, P.J. (2017), Generation expansion planning optimisation with renewable energy integration: A review. In Renewable and Sustainable Energy Reviews, 69, 790-803. Paez, A.F., Maldonado, Y.M., Castro, A.O., Hernandez, N., Conde, E.,
dc.relationPacheco, L., Gonzalez, W., Sotelo, O. (2017), Future scenarios and trends of energy demand in Colombia using long-range energy alternative planning. International Journal of Energy Economics and Policy, 7(5), 178-190.
dc.relationR Foundation for Statistical Computing. (2016), RStudio, Open Source and Professional Software for Data Science Teams-RStudio. Available from: https://www.rstudio.com.
dc.relationRafati, H.H.M., Jalili, M., Davari, H., Maknoon, R. (2016), Prediction of Iran’s Annual Electricity Demand: Artificial Intelligence Approaches. India: Proceedings-2015 11th International Conference on Innovations in Information Technology, IIT. p373-377.
dc.relationSahraei, M.A., Duman, H., Çodur, M.Y., Eyduran, E. (2021), Prediction of transportation energy demand: Multivariate adaptive regression splines. Energy, 224, 120090.
dc.relationXM. (2021), XM-compañía Expertos en Mercados. Available from: http:// www.xm.com.co/Paginas/Home.aspx.
dc.relationYuan, M., Lin, Y. (2006), Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 49-67.
dc.relationZabrodin, E.E., Lokhtin, I.P., Sidorova, A.A., Chernyshov, A.S. (2020), Mechanisms of forward-backward correlations in the multiplicity of particles in ultrarelativistic heavy-ion collisions. Journal of Experimental and Theoretical Physics, 130(5), 660-665.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceInternational Journal of Energy Economics and Policy
dc.sourcehttps://econjournals.com/index.php/ijeep/article/view/11386
dc.subjectEnergy forecasting
dc.subjectElectricity demand
dc.subjectMacroeconomics indicator
dc.subjectBackward
dc.subjectForward
dc.subjectStepwise methods
dc.titleThe behavior of the annual electricity demand and the role of economic growth in Colombia
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución