dc.creatorViloria, Amelec
dc.creatorVarela Izquierdo, Noel
dc.creatorOvallos, David
dc.creatorPineda Lezama, Omar Bonerge
dc.creatorRONCALLO PICHON, ALBERTO DE JESUS
dc.creatorMartinez Ventura, Jairo
dc.date2021-01-18T20:51:10Z
dc.date2021-01-18T20:51:10Z
dc.date2021
dc.date.accessioned2023-10-03T20:04:48Z
dc.date.available2023-10-03T20:04:48Z
dc.identifierhttps://hdl.handle.net/11323/7712
dc.identifierhttps://doi.org/10.1007/978-981-15-7234-0_85
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174211
dc.descriptionGoogle Maps web mapping service allows, through its extensive API development tool, to extract, process and store updated and real-time road information such as the aerial view of a road network, the travel time and distance between two points and the geographic coordinates of intersections (Di Natale et al. in understanding and using the controller area network communication protocol. Springer, New York, NY, 2012 [1]). However, trivial data required in the construction of the digraph, such as the relationship of the streets associated to those intersections and the type of direction that corresponds to each street, do not exist as an attribute in the API since they are not freely accessible or an excessive cost must be paid for the database. Therefore, a practical way to obtain this specific information is through the development of an application that allows the visual selection of the characteristic elements of a network and the extraction of the necessary data in the construction of related digraphs as a tool in the solution of road problems (Rutty et al. in Transp Res Part Transp Environ 24:44–51, 2013 [2]). This research proposes a method to build digraphs with an application in the Google Maps API in the visual extraction of elements such as vertices (intersections), edges (streets) and direction arrows (road direction), allowing the application of Dijkstra’s algorithm in search of alternative routes.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation1. Di Natale M, Zeng H, Giusto P, Ghosal (2012) Understanding and using the controller area network communication protocol. Springer, New York, NY
dc.relation2. Rutty M, Matthews L, Andrey J, Matto TD (2013) Eco-driver training within the City of Calgary’s municipal fleet: monitoring the impact. Transp Res Part Transp Environ 24:44–51
dc.relation3. Zarkadoula M, Zoidis G, Tritopoulou E (2007) Training urban bus drivers to promote smart driving: a note on a Greek eco-driving pilot program. Transp Res Part Transp Environ 12(6):449–451
dc.relation4. Strömberg HK, Karlsson ICM (2013) Comparative effects of eco-driving initiatives aimed at urban bus drivers—results from a field trial. Transp Res Part Transp Environ 22:28–33
dc.relation5. Vagg C, Brace CJ, Hari D, Akehurst S, Poxon J, Ash L (2013) Development and field trial of a driver assistance system to encourage eco-driving in light commercial vehicle fleets. IEEE Trans Intell Transp Syst 14(2):796–805
dc.relation6. Ferreira JC, de Almeida J, da Silva AR (2015) The impact of driving styles on fuel consumption: a data-warehouse-and-data-mining-based discovery process. IEEE Trans Intell Transp Syst 16(5):2653–2662
dc.relation7. Rionda A et al (2014) Blended learning system for efficient professional driving. Comput Educ 78:124–139
dc.relation8. Restrepo J, Sánchez J (2004) Aplicación de la teoría de grafos y el algoritmo de Dijkstra para determinar las distancias y las rutas más cortas en una ciudad. Scientia et technica 10(26):121–126
dc.relation9. Nathaniel O, Nsikan A (2017) Anapplication of Dijkstra’s Algorithm to shortest route problem. IOSR J Math 13(3):20–32
dc.relation10. Saboohi Y, Farzaneh H (2009) Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption. Appl Energy 86(10):1925–1932
dc.relation11. Hellström E, Åslund J, Nielsen L (2010) Design of an efficient algorithm for fuel-optimal look-ahead control. Control Eng Pract 18(11):1318–1327
dc.relation12. Saerens B, Vandersteen J, Persoons T, Swevers J, Diehl M, Van den Bulck E (2009) Minimization of the fuel consumption of a gasoline engine using dynamic optimization. Appl Energy 86(9):1582–1588
dc.relation13. Mensing F, Trigui R, Bideaux E (2011) Vehicle trajectory optimization for application in ECO-driving. In: 2011 IEEE vehicle power and propulsion conference, pp 1–6
dc.relation14. Rionda Rodriguez A, Martinez Alvarez D, Paneda XG, Arbesu Carbajal D, Jimenez JE, Fernandez Linera F (2013) Tutoring system for the efficient driving of combustion vehicles. IEEE Rev Iberoam Tecnol Aprendiz RITA 8(2):82–89
dc.relation15. Pañeda G et al (2016) An architecture for a learning analytics system applied to efficient driving. IEEE Rev Iberoam Tecnol Aprendiz RITA 11(3):137–145
dc.relation16. Mokhtar K, Shah MZ (2006) A regression model for vessel turnaround time. Tokyo academic industry & culture integration tour, pp 10–19
dc.relation17. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40 2019, pp 1201–1206
dc.relation18. Amelec V (2015) Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv Sci Lett 21(5):1406–1408
dc.relation19. Viloria A, Robayo PV (2016) Inventory reduction in the supply chain of finished products for multinational companies. Indian J Sci Technol 8(1)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceAdvances in Intelligent Systems and Computing
dc.sourcehttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_85
dc.subjectDigraph
dc.subjectRoad network
dc.subjectGoogle maps API
dc.subjectDijkstra’s algorithm
dc.subjectAlternative route
dc.titleReal road networks on digital maps with applications in the search for optimal routes
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución