dc.creatorSilva, Jesús
dc.creatorH, H
dc.creatorNúñez, Vladimir
dc.creatorRuiz Lázaro, Alex
dc.creatorVarela Izquierdo, Noel
dc.date2020-04-17T00:16:16Z
dc.date2020-04-17T00:16:16Z
dc.date2020-02-01
dc.date.accessioned2023-10-03T20:04:18Z
dc.date.available2023-10-03T20:04:18Z
dc.identifier17426588
dc.identifierhttps://hdl.handle.net/11323/6212
dc.identifier10.1088/1742-6596/1432/1/012074
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174196
dc.descriptionThis study describes a model of explanations in natural language for classification decision trees. The explanations include global aspects of the classifier and local aspects of the classification of a particular instance. The proposal is implemented in the ExpliClas open source Web service [1], which in its current version operates on trees built with Weka and data sets with numerical attributes. The feasibility of the proposal is illustrated with two example cases, where the detailed explanation of the respective classification trees is shown.
dc.descriptionEste estudio describe un modelo de explicaciones en lenguaje natural para la clasificación. árboles de decisión. Las explicaciones incluyen aspectos globales del clasificador y aspectos locales del clasificación de una instancia particular. La propuesta se implementa en el código abierto ExpliClas Servicio web [1], que en su versión actual opera en árboles construidos con Weka y conjuntos de datos con atributos numéricos La viabilidad de la propuesta se ilustra con dos casos de ejemplo, donde Se muestra la explicación detallada de los respectivos árboles de clasificación.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Physics: Conference Series
dc.relation[2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.
dc.relation[3] S. Ramiırez-Gallego, A. Fernandez, S. Garcıa, M. Chen, and F. Herrera, “Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with mapreduce,” Information Fusion, vol. 42, pp. 51 – 61, 2018
dc.relation[4] M. Hamstra, H. Karau, M. Zaharia, A. Konwinski, and P. Wendell, Learning Spark: LightningFast Big Data Analytics. O’Reilly Media, 2015.
dc.relation[5] Lis-Gutiérrez JP., Gaitán-Angulo M., Henao L.C., Viloria A., Aguilera-Hernández D., PortilloMedina R. (2018) Measures of Concentration and Stability: Two Pedagogical Tools for Industrial Organization Courses. In: Tan Y., Shi Y., Tang Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Cham
dc.relation[6] J. Lin, “Mapreduce is good enough? if all you have is a hammer, throw away everything that’s not a nail!” Big Data, vol. 1, no. 1, pp. 28–37, 2013.
dc.relation[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.
dc.relation[8] D. Garcia-Gil, S. Ramiırez-Gallego, S. Garcia, and F. Herrera, “Principal Components Analysis Random Discretization Ensemble for Big Data,” Knowledge-Based Systems, vol. 150, pp. 166 – 174, 2018.
dc.relation[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.
dc.relation[10] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.
dc.relation[11] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell, “Generating visual explanations,” in Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 2016, pp. 3–19.
dc.relation[12] A. Gatt and E. Krahmer, “Survey of the state of the art in natural language generation: Core tasks, applications and evaluation,” Journal of Artificial Intelligence Research, vol. 61, pp. 65–170, 2018.
dc.relation[13] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633.
dc.relation[14] S. Barocas and D. Boyd, “Computing ethics. engaging the ethics of data science in practice,” Communications of the ACM, vol. 60, no. 11, pp. 23–25, 2017.
dc.relation[15] Hernández, J. A., Burlak, G., Muñoz Arteaga, J., y Ochoa, A. (2006). Propuesta para la evaluación de objetos de aprendizaje desde una perspectiva integral usando minería de datos. En A. Hernández y J. Zechinelli (Eds.), Avances en la ciencia de la computación (pp. 382-387). México: Universidad Autónoma de México.
dc.relation[16] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.
dc.relation[16] S. Gang Wu, F. Sheng Bao, E. You Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang, “A leaf recognition algorithm for plant classification using probabilistic neural network,” in IEEE International Symposium on Signal Processing and Information Technology, 2007, pp. 1–6..
dc.relation[17] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, 4th ed. Morgan Kaufmann, 2016.
dc.relation[18] D. Gunning, “Explainable Artificial Intelligence (XAI),” Defense Advan- ced Research Projects Agency (DARPA), Arlington, USA, Tech. Rep., 2016, DARPA-BAA-16-53
dc.relation[19] Scheffer, T. (2004). Finding Association Rules that Trade Support Optimally Against Confidence. Intelligent Data Analysis, 9(4), 381-395.
dc.relation[20] J. M. Alonso, A. Ramos-Soto, E. Reiter, and K. van Deemter, “An exploratory study on the benefits of using natural language for ex- plaining fuzzy rule-based systems,” in IEEE International Conferen- ce on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 2017, pp. 1–6, http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015489.
dc.relation[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing,” in Procee- dins of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12). San Jose, CA: USENIX, 2012, pp. 15–28
dc.relation[22] S. Verbaeten and A. Assche, “Ensemble methods for noise elimination in classification problems,” in 4th International Workshop on Multiple Classifier Systems, ser. Lecture Notes on Computer Science, vol. 2709. Springer, 2003, pp. 317–325.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectModelo de explicaciones
dc.subjectArboles de decisión
dc.subjectCódigo abierto ExpliClas
dc.subjectExplanation model
dc.subjectDecision trees
dc.subjectOpen source ExpliClas
dc.titleNatural language explanation model for decision trees
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución