dc.creator | Chen, Tzu-Chia | |
dc.creator | Alizadeh, Mehdi | |
dc.creator | Albahar, Marwan | |
dc.creator | Thanoon, Mohammed | |
dc.creator | Alammari, Abdullah | |
dc.creator | Grimaldo Guerrero, John William | |
dc.creator | nazemi, ehsan | |
dc.creator | Eftekhari-Zadeh, Ehsan | |
dc.date | 2023-06-01T22:22:04Z | |
dc.date | 2023-06-01T22:22:04Z | |
dc.date | 2023-01-11 | |
dc.date.accessioned | 2023-10-03T20:03:58Z | |
dc.date.available | 2023-10-03T20:03:58Z | |
dc.identifier | Chen, T.-C.; Alizadeh, S.M.; Albahar, M.A.; Thanoon, M.; Alammari, A.; Guerrero, J.W.G.; Nazemi, E.; Eftekhari-Zadeh, E. Introducing the Effective Features Using the Particle Swarm Optimization Algorithm to Increase Accuracy in Determining the Volume Percentages of Three-Phase Flows. Processes 2023, 11, 236. https:// doi.org/10.3390/pr11010236 | |
dc.identifier | https://hdl.handle.net/11323/10218 | |
dc.identifier | 10.3390/pr11010236 | |
dc.identifier | 2227-9717 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174159 | |
dc.description | What is presented in this research is an intelligent system for detecting the volume percentage of three-phase fluids passing through oil pipes. The structure of the detection system consists of an X-ray tube, a Pyrex galss pipe, and two sodium iodide detectors. A three-phase fluid of water, gas, and oil has been simulated inside the pipe in two flow regimes, annular and stratified. Different volume percentages from 10 to 80% are considered for each phase. After producing and emitting X-rays from the source and passing through the pipe containing a three-phase fluid, the intensity of photons is recorded by two detectors. The simulation is introduced by a Monte Carlo N-Particle (MCNP) code. After the implementation of all flow regimes in different volume percentages, the signals recorded by the detectors were recorded and labeled. Three frequency characteristics and five wavelet transform characteristics were extracted from the received signals of each detector, which were collected in a total of 16 characteristics from each test. The feature selection system based on the particle swarm optimization (PSO) algorithm was applied to determine the best combination of extracted features. The result was the introduction of seven features as the best features to determine volume percentages. The introduced characteristics were considered as the input of a Multilayer Perceptron (MLP) neural network, whose structure had seven input neurons (selected characteristics) and two output neurons (volume percentage of gas and water). The highest error obtained in determining volume percentages was equal to 0.13 as MSE, a low error compared with previous works. Using the PSO algorithm to select the most optimal features, the current research’s accuracy in determining volume percentages has significantly increased. | |
dc.format | 16 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | MDPI AG | |
dc.publisher | Switzerland | |
dc.relation | Processes | |
dc.relation | 1. Salgado, C.M.; Pereira, C.M.; Schirru, R.; Brandão, L.E. Flow regime identification and volume fraction prediction in multiphase
flows by means of gamma-ray attenuation and artificial neural networks. Prog. Nucl. Energy 2010, 52, 555–562. [CrossRef] | |
dc.relation | 2. Peyvandi, R.G.; Rad, S.Z.I. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma
rays backscattered by three-phase flows. Eur. Phys. J. Plus 2017, 132, 511. [CrossRef] | |
dc.relation | 3. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial
intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef] | |
dc.relation | 4. Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the structure of two-phase flow meter using feature extraction and GMDH
neural network. Radiat. Phys. Chem. 2020, 171, 108725. [CrossRef] | |
dc.relation | 5. Roshani, G.; Nazemi, E.; Roshani, M. Intelligent recognition of gas-oil-water three-phase flow regime and determination of
volume fraction using radial basis function. Flow Meas. Instrum. 2017, 54, 39–45. [CrossRef] | |
dc.relation | 6. Hanus, R.; Zych, M.; Petryka, L.; Jaszczur, M.; Hanus, P. Signals features extraction in liquid-gas flow measurements using
gamma densitometry. Part 1: Time domain. EPJ Web Conf. 2016, 114, 02035. [CrossRef] | |
dc.relation | 7. Hanus, R.; Zych, M.; Petryka, L.; Jaszczur, M.; Hanus, P. Signals features extraction in liquid-gas flow measurements using
gamma densitometry. Part 2: Frequency domain. EPJ Web Conf. 2016, 114, 02036. [CrossRef] | |
dc.relation | 8. Hanus, R.; Zych, M.; Kusy, M.; Jaszczur, M.; Petryka, L. Identification of liquid-gas flow regime in a pipeline using gamma-ray
absorption technique and computational intelligence methods. Flow Meas. Instrum. 2018, 60, 17–23. [CrossRef] | |
dc.relation | 9. Hosseini, S.; Roshani, G.; Setayeshi, S. Precise gamma based two-phase flow meter using frequency feature extraction and only
one detector. Flow Meas. Instrum. 2020, 72, 101693. [CrossRef] | |
dc.relation | 10. Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network
technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum.
2020, 75, 101804. [CrossRef] | |
dc.relation | 11. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase flows
based on gamma ray attenuation. Measurment 2015, 62, 25–32. [CrossRef] | |
dc.relation | 12. Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the flow
regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy 2016, 41, 7438–7444.
[CrossRef] | |
dc.relation | 13. Roshani, G.H.; Nazemi, E.; Roshani, M.M. Flow regime independent volume fraction estimation in three-phase flows using
dual-energy broad beam technique and artificial neural network. Neural Comput. Appl. 2016, 28, 1265–1274. [CrossRef] | |
dc.relation | 14. Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.; Peyvandi, R.G.; Setayeshi, S. Precise Void Fraction Measurement in Two-phase Flows
Independent of the Flow Regime Using Gamma-ray Attenuation. Nucl. Eng. Technol. 2016, 48, 64–71. [CrossRef] | |
dc.relation | 15. Song, K.; Liu, Y. A compact X-ray system for two-phase flow measurement. Meas. Sci. Technol. 2017, 29, 025305. [CrossRef] | |
dc.relation | 16. Roshani, M.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.H.; Tran, H.N.; Nazemi, E. X-ray tube with artificial
neural network model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Appl. Radiat.
Isot. 2020, 164, 109255. [CrossRef] | |
dc.relation | 17. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH
neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows.
Measurement 2021, 168, 108427. [CrossRef] | |
dc.relation | 18. Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Nazemi, E.; Eftekhari-Zadeh, E.; Kalmoun,
E.M. Feasibility Study of Using X-ray Tube and GMDH for Measuring Volume Fractions of Annular and Stratified Regimes in
Three-Phase Flows. Symmetry 2021, 13, 613. [CrossRef] | |
dc.relation | 19. Hernandez, A.M.; Boone, J.M. Tungsten anode spectral model using interpolating cubic splines: Unfiltered x-ray spectra from 20
kV to 640 kV. Med. Phys. 2014, 41, 042101. [CrossRef] | |
dc.relation | 20. Nussbaumer, H.J. The fast Fourier transforms. In Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg,
Germany, 1981; pp. 80–111. | |
dc.relation | 21. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005.
[CrossRef] | |
dc.relation | 22. Soltani, S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 2002, 48, 267–277. [CrossRef] | |
dc.relation | 23. Taylan, O.; Sattari, M.A.; Essoussi, I.E.; Nazemi, E. Frequency Domain Feature Extraction Investigation to Increase the Accuracy
of an Intelligent Nondestructive System for Volume Fraction and Regime Determination of Gas-Water-Oil Three-Phase Flows.
Mathematics 2021, 9, 2091. [CrossRef] | |
dc.relation | 24. Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of Discrete Wavelet Transform for Feature
Extraction to Increase the Accuracy of Monitoring Systems of Liquid Petroleum Products. Mathematics 2021, 9, 3215. [CrossRef] | |
dc.relation | 25. Iliyasu, A.M.; Mayet, A.M.; Hanus, R.; El-Latif, A.A.A.; Salama, A.S. Employing GMDH-Type Neural Network and Signal
Frequency Feature Extraction Approaches for Detection of Scale Thickness inside Oil Pipelines. Energies 2022, 15, 4500. [CrossRef] | |
dc.relation | 26. Mayet, A.M.; Alizadeh, S.M.; Hamakarim, K.M.; Al-Qahtani, A.A.; Alanazi, A.K.; Guerrero, J.W.G.; Alhashim, H.H.; EftekhariZadeh, E. Application of Wavelet Characteristics and GMDH Neural Networks for Precise Estimation of Oil Product Types and
Volume Fractions. Symmetry 2022, 14, 1797. [CrossRef] | |
dc.relation | 27. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef] | |
dc.relation | 28. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on
Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage,
AK, USA, 4–9 May 1998; pp. 69–73. [CrossRef] | |
dc.relation | 29. Sattari, M.A.; Korani, N.; Hanus, R.; Roshani, G.H.; Nazemi, E. Improving the performance of gamma radiation based two phase
flow meters using optimal time characteristics of the detector output signal extraction. J. Nucl. Sci. Technol. (JonSat) 2020, 41,
42–54. | |
dc.relation | 30. Khaibullina, K. Technology to remove asphaltene, resin and paraffin deposits in wells using organic solvents. In Proceedings of
the SPE Annual Technical Conference and Exhibition 2016, Dubai, United Arab Emirates, 26–28 September 2016. | |
dc.relation | 31. Tikhomirova, E.A.; Sagirova, L.R.; Khaibullina, K.S. A review on methods of oil saturation modelling using IRAP RMS. IOP Conf.
Series Earth Environ. Sci. 2019, 378, 012075. [CrossRef] | |
dc.relation | 32. Khaibullina, K.S.; Korobov, G.Y.; Lekomtsev, A.V. Development of an asphalt-resin-paraffin deposits inhibitor and substantiation
of the technological parameters of its injection into the bottom-hole formation zone. Period. Tche Quim. 2020, 17, 769–781.
[CrossRef] | |
dc.relation | 33. Khaibullina, K.S.; Sagirova, L.R.; Sandyga, M.S. Substantiation and selection of an inhibitor for preventing the formation of
asphalt-resin-paraffin deposits. Period. Tche Quim. 2020, 17, 541–551. [CrossRef] | |
dc.relation | 34. Mayet, A.M.; Alizadeh, S.M.; Kakarash, Z.A.; Al-Qahtani, A.A.; Alanazi, A.K.; Alhashimi, H.H.; Eftekhari-Zadeh, E.; Nazemi, E.
Introducing a Precise System for Determining Volume Percentages Independent of Scale Thickness and Type of Flow Regime.
Mathematics 2022, 10, 1770. [CrossRef] | |
dc.relation | 35. Mayet, A.M.; Alizadeh, S.M.; Nurgalieva, K.S.; Hanus, R.; Nazemi, E.; Narozhnyy, I.M. Extraction of Time-Domain Characteristics
and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems.
Energies 2022, 15, 1986. [CrossRef] | |
dc.relation | 36. Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design
of a Compact Planar Transmission Line for Miniaturized Rat-Race Coupler with Harmonics Suppression. IEEE Access 2021, 9,
129207–129217. [CrossRef] | |
dc.relation | 37. Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler.
Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22252. [CrossRef] | |
dc.relation | 38. Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics
suppression using open and short stubs. Frequenz 2020, 74, 169–176. [CrossRef] | |
dc.relation | 39. Jamshidi, M.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped
resonators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [CrossRef] | |
dc.relation | 40. Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators
using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [CrossRef] | |
dc.relation | 41. Roshani, S.; Azizian, J.; Roshani, S.; Jamshidi, M.; Parandin, F. Design of a miniaturized branch line microstrip coupler with a
simple structure using artificial neural network. Frequenz 2022, 76, 255–263. [CrossRef] | |
dc.relation | 42. Khaleghi, M.; Salimi, J.; Farhangi, V.; Moradi, M.J.; Karakouzian, M. Application of Artificial Neural Network to Predict Load
Bearing Capacity and Stiffness of Perforated Masonry Walls. Civileng 2021, 2, 48–67. [CrossRef] | |
dc.relation | 43. Zych, M.; Petryka, L.; K ˛ep ´nski, J.; Hanus, R.; Bujak, T.; Puskarczyk, E. Radioisotope investigations of compound two-phase flows
in an ope channel. Flow Meas. Instrum. 2014, 35, 11–15. [CrossRef] | |
dc.relation | 44. Zych, M.; Hanus, R.; Wilk, B.; Petryka, L.; Swisulski, D. Comparison of noise reduction methods in radiometric correlation ´
measurements of two-phase liquid-gas flows. Measurement 2018, 129, 288–295. [CrossRef] | |
dc.relation | 45. Golijanek-J ˛edrzejczyk, A.; Mrowiec, A.; Hanus, R.; Zych, M.; Heronimczak, M.; Swisulski, D. Uncertainty of mass flow ´
measurement using centric and eccentric orifice for Reynolds number in the range 10,000 ≤ Re ≤ 20,000. Measurement 2020,
160, 107851. [CrossRef] | |
dc.relation | 46. Mayet, A.; Hussain, M. Amorphous WNx Metal For Accelerometers and Gyroscope. In Proceedings of the MRS Fall Meeting,
Boston, MA, USA, 30 November–5 December 2014. | |
dc.relation | 47. Mayet, A.M.; Hussain, A.M.; Hussain, M.M. Three-terminal nanoelectromechanical switch based on tungsten nitride—An
amorphous metallic material. Nanotechnology 2015, 27, 035202. [CrossRef] [PubMed] | |
dc.relation | 48. Shukla, N.K.; Mayet, A.M.; Vats, A.; Aggarwal, M.; Raja, R.K.; Verma, R.; Muqeet, M.A. High speed integrated RF–VLC data
communication system: Performance constraints and capacity considerations. Phys. Commun. 2021, 50, 101492. [CrossRef] | |
dc.relation | 49. Dabiri, H.; Farhangi, V.; Moradi, M.J.; Zadehmohamad, M.; Karakouzian, M. Applications of Decision Tree and Random Forest as
Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforcement Bars.
Appl. Sci. 2022, 12, 4851. [CrossRef] | |
dc.relation | 50. Mayet, A.; Smith, C.E.; Hussain, M.M. Energy reversible switching from amorphous metal based nanoelectromechanical switch.
In Proceedings of the 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 5–8 August
2013; pp. 366–369. | |
dc.relation | 51. Alamoudi, M.; Sattari, M.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E. Application of Gamma
Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different
Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. [CrossRef] | |
dc.relation | 52. Karami, A.; Roshani, G.H.; Khazaei, A.; Nazemi, E.; Fallahi, M. Investigation of different sources in order to optimize the nuclear
metering system of gas–oil–water annular flows. Neural Comput. Appl. 2020, 32, 3619–3631. [CrossRef] | |
dc.relation | 53. Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Sattari, M.A.; Amiri, S.; Nazemi, E.;
Eftekhari-Zadeh, E.; et al. Simulation Study of Utilizing X-ray Tube in Monitoring Systems of Liquid Petroleum Products.
Processes 2021, 9, 828. [CrossRef] | |
dc.relation | 54. Taylor, J.G. Neural Networks and Their Applications; John Wiley & Sons Ltd.: Brighton, UK, 1996. | |
dc.relation | 55. Gallant, A.R.; White, H. On learning the derivatives of an unknown mapping with multilayer feedforward networks. Neural
Netw. 1992, 5, 129–138. [CrossRef] | |
dc.relation | 56. Abunadi, I.; Albraikan, A.A.; Alzahrani, J.S.; Eltahir, M.M.; Hilal, A.M.; Eldesouki, M.I.; Motwakel, A.; Yaseen, I. An Automated
Glowworm Swarm Optimization with an Inception-Based Deep Convolutional Neural Network for COVID-19 Diagnosis and
Classification. Healthcare 2022, 10, 697. [CrossRef] | |
dc.relation | 57. Ahmad, M.; Khaja, I.A.; Baz, A.; Alhakami, H.; Alhakami, W. Particle Swarm Optimization Based Highly Nonlinear SubstitutionBoxes Generation for Security Applications. IEEE Access 2020, 8, 116132–116147. [CrossRef] | |
dc.relation | 58. Alshareef, M.; Lin, Z.; Ma, M.; Cao, W. Accelerated Particle Swarm Optimization for Photovoltaic Maximum Power Point Tracking
under Partial Shading Conditions. Energies 2019, 12, 623. [CrossRef] | |
dc.relation | 59. Alshareef, M. A New Particle Swarm Optimization with Bat Algorithm Parameter-Based MPPT for Photovoltaic Systems under
Partial Shading Conditions. Stud. Inform. Control. 2022, 31, 53–66. [CrossRef] | |
dc.relation | 60. Khalaj, O.; Jamshidi, M.B.; Saebnoori, E.; Masek, B.; Stadler, C.; Svoboda, J. Hybrid Machine Learning Techniques and Computational Mechanics: Estimating the Dynamic Behavior of Oxide Precipitation Hardened Steel. IEEE Access 2021, 9, 156930–156946.
[CrossRef] | |
dc.relation | 61. Jamshidi, M.B.; Roshani, S.; Talla, J.; Roshani, S. Using an ANN approach to estimate output power and PAE of a modified class-F
power amplifier. In Proceedings of the 2020 International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 8–9
September 2020; pp. 1–6. | |
dc.relation | 62. Jamshidi, M.; Siahkamari, H.; Jamshidi, M. Using artificial neural networks and system identification methods for electricity price
modeling. In Proceedings of the 2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS), Shahrood,
Iran, 20–21 December 2017; pp. 43–47. | |
dc.relation | 16 | |
dc.relation | 1 | |
dc.relation | 1 | |
dc.relation | 11 | |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.mdpi.com/2227-9717/11/1/236 | |
dc.subject | Volume fraction | |
dc.subject | PSO | |
dc.subject | MLP neural network | |
dc.subject | Feature extraction | |
dc.subject | Wavelet | |
dc.subject | Frequency domain | |
dc.subject | Artificial intelligence | |
dc.title | Introducing the effective features using the particle swarm optimization algorithm to increase accuracy in determining the volume percentages of three-phase flows | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |