dc.creatorLou, Wen-Yong
dc.creatorFernández-Lucas, Jesús
dc.creatorGe, Jun
dc.creatorWu, Changzhu
dc.date2021-03-12T21:32:08Z
dc.date2021-03-12T21:32:08Z
dc.date2021-03-01
dc.date.accessioned2023-10-03T20:03:46Z
dc.date.available2023-10-03T20:03:46Z
dc.identifier2296-4185
dc.identifierhttps://hdl.handle.net/11323/8004
dc.identifierhttps://doi.org/10.3389/fbioe.2021.620292
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174140
dc.descriptionBiocatalysts represented by enzymes and enzyme-containing whole cells are generally fragile and easily inactivated in practical application conditions. The immobilization concept and techniques have been recognized as classic and powerful strategy for tackling such challenges (Hanefeld et al., 2009). Based on this background, a special Research Topic entitled Enzyme or Whole Cell Immobilization for Efficient Biocatalysis: Focusing on Novel Supporting Platforms and Immobilization Techniques had been organized and presented in the platform of Frontiers in Bioengineering and Biotechnology, which aimed to collect different insights and latest findings regarding but not limited to new theories, techniques and methodologies in this area. Over the past year since Sept. 2019, this Research Topic has attracted 242 authors from more than 10 countries to participate and contribute their manuscripts. Consequently, this special issue has selected and presented 40 peer-reviewed articles to meet the readers, including 31 Original Researches, four Brief Research Reports, four Reviews, and one General Commentary, which involved various aspects and every corner of this area.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationHanefeld, U., Gardossi, L., and Magner, E. (2009). Understanding enzyme immobilisation. Chem. Soc. Rev. 38, 453–468. doi: 10.1039/B711564B
dc.relationLiang, S., Wu, X.-L., Xiong, J., Zong, M.-H., and Lou, W.-Y. J. (2020). Metalorganic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord. Chem. Rev. 406:213149. doi: 10.1016/j.ccr.2019.213149
dc.relationPätzold, M., Siebenhaller, S., Kara, S., Liese, A., Syldatk, C., and Holtmann, D. (2019). Deep eutectic solvents as efficient solvents in biocatalysis. Trends Biotechnol. 37, 943–959. doi: 10.1016/j.tibtech.2019.03.007
dc.relationRen, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., and Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Che. Eng. J. 373, 1254–1278. doi: 10.1016/j.cej.2019.05.141
dc.relationTaheri-Kafrani, A., Kharazmi, S., Nasrollahzadeh, M., Soozanipour, A., Ejeian, F., Etedali, P., et al. (2000). Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit. Rev. Food Sci. Nutr. 1–37. doi: 10.1080/10408398.2020. 1793726
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceFrontiers in Bioengineering and Biotechnology
dc.sourcehttps://www.frontiersin.org/articles/10.3389/fbioe.2021.620292/full
dc.subjectEnzyme immobilization
dc.subjectWhole-cell immobilization
dc.subjectBiotransformation
dc.subjectBiocatalysis
dc.subjectImmobilization materials
dc.titleEnzyme or whole cell immobilization for efficient biocatalysis: focusing on novel supporting platforms and immobilization techniques
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución