dc.creatorSchio, Rejiane R.
dc.creatorGonçalves, Janaína
dc.creatorMallmann, Evandro S.
dc.creatorPinto, Diana
dc.creatorDotto, Guilherme Luiz
dc.date2021-11-17T16:28:19Z
dc.date2021-11-17T16:28:19Z
dc.date2021
dc.date2022
dc.date.accessioned2023-10-03T20:02:58Z
dc.date.available2023-10-03T20:02:58Z
dc.identifier0141-8130
dc.identifier1879-0003
dc.identifierhttps://hdl.handle.net/11323/8871
dc.identifierhttps://doi.org/10.1016/j.ijbiomac.2021.10.096
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174105
dc.descriptionA new bioadsorbent from Luffa cylindrica and cross-linked chitosan was proposed in the present study. Luffa was used as a natural support medium for chitosan crosslinked with glutaraldehyde (LCsG) and epichlorohydrin (LCsE). Biosponges were applied to remove Allura red from aqueous solutions. LCsG and LCsE were produced using different concentrations of chitosan (1%, 3% and 5% (m v−1)) and crosslinking agents (0.5%, 1.0% and 1.5% (v v−1)). Based on the FT-IR spectra, functional groups characteristic of chitosan crosslinked with glutaraldehyde and epichlorohydrin confirmed the crosslinking. In addition, the biosorbent revealed highly efficient functional groups and morphology with irregularities favorable for adsorption. It was found that the increase in the percentage of glutaraldehyde and epichlorohydrin increased the sample's swelling degree, and the degree of cross-linking was greater than 80% for all LCsG. The results regarding the degree of swelling and degree of crosslinking corroborated with the evaluation of the biosponge's adsorptive potential. The Sips model predicted the equilibrium isotherms, with a maximum adsorption capacity of 89.05 mg g−1 for LCsG and 60.91 mg g−1 for LCsE. The new procedure was successful. Luffa was excellent support for chitosan, resulting in an attractive, low-cost bioadsorbent, preventing renewable sources.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] A. Dhanola, A.S. Bisht, A. Kumar, A. Kumar Influence of natural fillers on physicomechanical properties of luffa cylindrica/polyester composites Mater. Today Proc., 5 (2018), pp. 17021-17029
dc.relation[2] M. Alhijazi, B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, Z. Qin Recent developments in luffa natural fiber composites: review Sustainability, 12 (2020), p. 7683
dc.relation[3] A.A. Maamoun, R.H. El-akkad, M.A. Farag Mapping metabolome changes in Luffa aegyptiaca mill fruits at different maturation stages via MS-based metabolomics and chemometrics J. Adv. Res., 29 (2021), pp. 179-189
dc.relation[4] V.K. Patel, A. Dhanola Influence of CaCO3, Al2O3, and TiO2 microfillers on physicomechanical properties of Luffa cylindrica/polyester composites Int. J. Eng. Sci. Technol., 19 (2016), pp. 676-683
dc.relation[5] Y. Chen, F. Yuan, Q. Su, C. Yu, K. Zhang, P. Luo, D. Hu, Y. Guo A novel sound absorbing material comprising discarded luffa scraps and polyester fibers J. Clean. Prod., 245 (2020), Article 118917 ArticleDownload PDFView Record in ScopusGoogle Scholar
dc.relation[6] F.J. Amaku, F. Onwu Kinetic studies on the effect of Pb (II), Ni (II) and Cd (II) ions on biosorption of Cr (III) ion from aqueous solutions by Luffa cylindrica fibre Adv. Appl. Sci. Res., 6 (2015), pp. 180-188
dc.relation[7] M. Salimi, Z. Salehi, H. Heidari, F. Vahabzadeh Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-nitrophenol J. Environ. Chem., 9 (2021), Article 105403
dc.relation[8] A.U. Emene, R. Edyvean Removal of Pb (II) ions from solution using chemically modified Luffa cylindrica as a method of sustainable water treatment Int. J. Eng. Res., 10 (2019), pp. 344-364
dc.relation[9] Q. Kong, Y. Wang, L. Shu, M. Miao Isotherm, kinetic, and thermodynamic equations for cefalexin removal from liquids using activated carbon synthesized from loofah sponge Desalin. Water Treat., 57 (2016), pp. 7933-7942
dc.relation[10] F. Xiao, J. Cheng, W. Cao, C. Yang, J. Chen, Z. Luo Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars J. Colloid Interface Sci., 540 (2019), pp. 579-584
dc.relation[11] A.H. Gedam, R.S. Dongre Activated carbon from Luffa cylindrica doped chitosan for mitigation of lead(II) from an aqueous solution RSC Adv., 6 (2016), pp. 22639-22652
dc.relation[12] J.M.N. Dos Santos, C.R. Pereira, E.L. Foletto, G.L. Dotto Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption Int. J. Biol. Macromol., 131 (2019), pp. 301-308
dc.relation[13] Z. Li, S. Yahyaoui, M. Bouzid, A. Erto, G.L. Dotto Interpretation of diclofenac adsorption onto ZnFe2O4/chitosan magnetic composite via BET modified model by using statistical physics formalism J. Mol. Liq., 114858 (2020)
dc.relation[14] J.O. Gonçalves, G.L. Dotto, L.A.A. Pinto Cyanoguanidine-crosslinked chitosan to adsorption of food dyes in the aqueous binary system J. Mol. Liq., 211 (2015), pp. 425-430
dc.relation[15] D.C.S. Alves, J.O. Gonçalves, B.B. Coseglio, T.A.L. Burgo, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadavaral Jr Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes J. Environ. Chem. Eng., 7 (6) (2019), Article 103460
dc.relation[16] S. Abraham, D. Rajamanick, B. Srinivasan Preparation, characterization and cross-linking of chitosan by microwave assisted synthesis Sci. Int., 6 (1) (2018), pp. 18-30
dc.relation[17] B. Zhang, R. Hu, D. Sun, T. Wu, Y. Li Fabrication of chitosan/magnetite-graphene oxide composites as a novel bioadsorbent for adsorption and detoxification of Cr(VI) from aqueous solution Sci. Rep., 8 (1) (2018), pp. 1-12
dc.relation[18] I.O. Saheed, O.W. Da, F.B.M. Suah Chitosan modifications for adsorption of pollutants - a review J. Hazard. Mater., 408 (2020), Article 124889
dc.relation[19] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto Preparation of chitosan with different characteristics and its application for biofilms production J. Polym. Environ., 23 (2015), pp. 470-477
dc.relation[20] H. Koseoglu Biotemplated Luffa cylindrical for the oil spill clean-up from seawater Desalin. Water Treat., 1–9 (2016)
dc.relation[21] A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin J. Hazard. Mater., 154 (1–3) (2008), pp. 184-191
dc.relation[22] J.O. Gonçalves, J.P. Santos, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A.A. Pinto Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system J. Mol. Liq., 225 (2017), pp. 265-270
dc.relation[23] R.M. Silverstein, F.X. Webster, D.J. Kiemle Spectrometric Identification of Organic Compounds John Wiley & Sons, New York (2007)
dc.relation[24] R. Dash, M. Foston, A.J. Ragauskas Improving the mechanical and thermal properties of gelatin hydrogels crosslinked by cellulose nanowhiskers Carbohydr. Polym., 91 (2) (2013), pp. 638-645
dc.relation[25] H.Z. Freundlich Over the adsorption in solution J. Phys. Chem., 57 (1906), p. 385
dc.relation[26] I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (1918), pp. 1361-1403
dc.relation[27] R. Sips On the structure of a catalyst surface J. Chem. Phys., 16 (1948), pp. 490-495
dc.relation[28] G. Martínez-Mejíaa, N.A. Vázquez-Torres, A. Castell-Rodríguez, J.M. Río, M.C.R. Jiménez-Juárez Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions Colloids Surf. A Physicochem. Eng. Asp., 579 (2019)
dc.relation[29] Q. Liu, N. Ji, L. Xiong, Q. Sun Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking Carbohydr. Polym., 246 (2020)
dc.relation[30] V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution Chem. Eng. Sci., 197 (2012), pp. 379-386
dc.relation[31] A.H. Jawad, A.S. Abdulhameed, A. Reghioua, Z.M. Yaseen Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes Int. J. Biol. Macromol., 163 (2020), pp. 756-765
dc.relation[32] V.B. Gavalyan Synthesis and characterization of new chitosan-based Schiff base compounds Carbohydr. Polym., 145 (2016), pp. 37-47
dc.relation[33] N. Nematidil, M. Sadeghi, S. Nezami, H. Sadeghi Synthesis and characterization of Schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions Carbohydr. Polym., 222 (2019)
dc.relation[34] H.F.G. Barbosa, D.S. Francisco, A.P.G. Ferreira, E.T.G. Cavalheiro A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR Carbohydr. Polym., 255 (2019)
dc.relation[35] D. Pathania, A. Sharma, V. Sethi Microwave induced graft copolymerization of binary monomers onto luffa cylindrica fiber: removal of congo red Procedia Eng., 200 (2017), pp. 408-415
dc.relation[36] Y. Wang, X. Wang, Y. Xiong, J. Fan, Z. Zheng, Y. Li, L. Dong, Z. Zhao Extraction optimization, separation and antioxidant activity of Luffa cylindrica polysaccharides Food Bioprod. Process., 116 (2019), pp. 98-104
dc.relation[37] A. Khadir, M. Negarestani, A. Mollahosseini Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lignocellulosic material (Luffa cylindrica) reinforced with polypyrrole: study of parameters, kinetics, and equilibrium J. Environ Chem. Eng., 8 (3) (2020)
dc.relation[38] L. Poon, L.D. Wilson, J.V. Headley Chitosan–glutaraldehyde copolymers and their sorption properties Carbohydr. Polym., 109 (2014), pp. 92-101
dc.relation[39] R.R. Schio, B.C. Rosa, J.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye Int. J. Biol. Macromol., 121 (2019), pp. 373-380
dc.relation[40] G.L. Dotto, J.M.N. Santos, E.H. Tanabe, D.A. Bertuol, E.L. Foletto, E.C. Lima, F.A. Pavan Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions J. Clean. Prod., 144 (2017), pp. 120-129
dc.relation[41] C.P. Pinheiro, L.M.K. Moreira, S.S. Alves, T.R.S. Cadaval Jr, L.A.A. Pinto Anthocyanins concentration by adsorption onto chitosan and alginate beads: isotherms, kinetics and thermodynamics parameters Int. J. Biol. Macromol., 166 (2021), pp. 934-939
dc.relation[42] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A.Ben Lamine Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon Fluid Phase Equil., 387 (2015), pp. 103-110
dc.relation[43] A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bédia, C. Bélver Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modeling Chem. Eng. J., 404 (2021), Article 126601
dc.relation[44] Y. Feng, Q. Liu, Y. Yu, Q. Kong, L. Zhou, Y. Du, X. Wang Norfloxacin removal from aqueous solution using biochar derived from luffa sponge J. Water Supply Res Technol., 67 (2018), pp. 703-714
dc.relation[45] S. Li, M. Tao, Y. Xie Reduced graphene oxide modified luffa sponge as a biocomposite adsorbent for effective removal of cationic dyes from aqueous solution Desalin. Water Treat., 1–9 (2015)
dc.relation[46] Y. Wang, Q. Liu, L. Shu, M. Miao, Y. Liu, Q. Kong Removal of Cr(VI) from aqueous solution using Fe-modified activated carbon prepared from luffa sponge: kinetic, thermodynamic, and isotherm studies Desalin. Water Treat., 1–12 (2016)
dc.relation[47] H. Nadaroglu, S. Cicek, A.A. Gungor Removing Trypan blue dye using nano-Zn modified Luffa sponge Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 172 (2016), pp. 2-8
dc.relation[48] A. Shahidi, N. Jalilnejad, E. Jalilnejad A study on adsorption of cadmium(II) ions from aqueous solution using Luffa cylindrica Desalin. Water Treat., 53 (2015), pp. 3570-3579
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceInternational Journal of Biological Macromolecules
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0141813021022534#!
dc.subjectLuffa cylindrica
dc.subjectCrosslinked
dc.subjectChitosan
dc.subjectAdsorption
dc.titleDevelopment of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución