dc.creator | Schio, Rejiane R. | |
dc.creator | Gonçalves, Janaína | |
dc.creator | Mallmann, Evandro S. | |
dc.creator | Pinto, Diana | |
dc.creator | Dotto, Guilherme Luiz | |
dc.date | 2021-11-17T16:28:19Z | |
dc.date | 2021-11-17T16:28:19Z | |
dc.date | 2021 | |
dc.date | 2022 | |
dc.date.accessioned | 2023-10-03T20:02:58Z | |
dc.date.available | 2023-10-03T20:02:58Z | |
dc.identifier | 0141-8130 | |
dc.identifier | 1879-0003 | |
dc.identifier | https://hdl.handle.net/11323/8871 | |
dc.identifier | https://doi.org/10.1016/j.ijbiomac.2021.10.096 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174105 | |
dc.description | A new bioadsorbent from Luffa cylindrica and cross-linked chitosan was proposed in the present study. Luffa was used as a natural support medium for chitosan crosslinked with glutaraldehyde (LCsG) and epichlorohydrin (LCsE). Biosponges were applied to remove Allura red from aqueous solutions. LCsG and LCsE were produced using different concentrations of chitosan (1%, 3% and 5% (m v−1)) and crosslinking agents (0.5%, 1.0% and 1.5% (v v−1)). Based on the FT-IR spectra, functional groups characteristic of chitosan crosslinked with glutaraldehyde and epichlorohydrin confirmed the crosslinking. In addition, the biosorbent revealed highly efficient functional groups and morphology with irregularities favorable for adsorption. It was found that the increase in the percentage of glutaraldehyde and epichlorohydrin increased the sample's swelling degree, and the degree of cross-linking was greater than 80% for all LCsG. The results regarding the degree of swelling and degree of crosslinking corroborated with the evaluation of the biosponge's adsorptive potential. The Sips model predicted the equilibrium isotherms, with a maximum adsorption capacity of 89.05 mg g−1 for LCsG and 60.91 mg g−1 for LCsE. The new procedure was successful. Luffa was excellent support for chitosan, resulting in an attractive, low-cost bioadsorbent, preventing renewable sources. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] A. Dhanola, A.S. Bisht, A. Kumar, A. Kumar
Influence of natural fillers on physicomechanical properties of luffa cylindrica/polyester composites
Mater. Today Proc., 5 (2018), pp. 17021-17029 | |
dc.relation | [2] M. Alhijazi, B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, Z. Qin
Recent developments in luffa natural fiber composites: review
Sustainability, 12 (2020), p. 7683 | |
dc.relation | [3] A.A. Maamoun, R.H. El-akkad, M.A. Farag
Mapping metabolome changes in Luffa aegyptiaca mill fruits at different maturation stages via MS-based metabolomics and chemometrics
J. Adv. Res., 29 (2021), pp. 179-189 | |
dc.relation | [4] V.K. Patel, A. Dhanola
Influence of CaCO3, Al2O3, and TiO2 microfillers on physicomechanical properties of Luffa cylindrica/polyester composites
Int. J. Eng. Sci. Technol., 19 (2016), pp. 676-683 | |
dc.relation | [5] Y. Chen, F. Yuan, Q. Su, C. Yu, K. Zhang, P. Luo, D. Hu, Y. Guo
A novel sound absorbing material comprising discarded luffa scraps and polyester fibers
J. Clean. Prod., 245 (2020), Article 118917
ArticleDownload PDFView Record in ScopusGoogle Scholar | |
dc.relation | [6] F.J. Amaku, F. Onwu
Kinetic studies on the effect of Pb (II), Ni (II) and Cd (II) ions on biosorption of Cr (III) ion from aqueous solutions by Luffa cylindrica fibre
Adv. Appl. Sci. Res., 6 (2015), pp. 180-188 | |
dc.relation | [7] M. Salimi, Z. Salehi, H. Heidari, F. Vahabzadeh
Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-nitrophenol
J. Environ. Chem., 9 (2021), Article 105403 | |
dc.relation | [8] A.U. Emene, R. Edyvean
Removal of Pb (II) ions from solution using chemically modified Luffa cylindrica as a method of sustainable water treatment
Int. J. Eng. Res., 10 (2019), pp. 344-364 | |
dc.relation | [9] Q. Kong, Y. Wang, L. Shu, M. Miao
Isotherm, kinetic, and thermodynamic equations for cefalexin removal from liquids using activated carbon synthesized from loofah sponge
Desalin. Water Treat., 57 (2016), pp. 7933-7942 | |
dc.relation | [10] F. Xiao, J. Cheng, W. Cao, C. Yang, J. Chen, Z. Luo
Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars
J. Colloid Interface Sci., 540 (2019), pp. 579-584 | |
dc.relation | [11] A.H. Gedam, R.S. Dongre
Activated carbon from Luffa cylindrica doped chitosan for mitigation of lead(II) from an aqueous solution
RSC Adv., 6 (2016), pp. 22639-22652 | |
dc.relation | [12] J.M.N. Dos Santos, C.R. Pereira, E.L. Foletto, G.L. Dotto
Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption
Int. J. Biol. Macromol., 131 (2019), pp. 301-308 | |
dc.relation | [13] Z. Li, S. Yahyaoui, M. Bouzid, A. Erto, G.L. Dotto
Interpretation of diclofenac adsorption onto ZnFe2O4/chitosan magnetic composite via BET modified model by using statistical physics formalism
J. Mol. Liq., 114858 (2020) | |
dc.relation | [14] J.O. Gonçalves, G.L. Dotto, L.A.A. Pinto
Cyanoguanidine-crosslinked chitosan to adsorption of food dyes in the aqueous binary system
J. Mol. Liq., 211 (2015), pp. 425-430 | |
dc.relation | [15] D.C.S. Alves, J.O. Gonçalves, B.B. Coseglio, T.A.L. Burgo, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadavaral Jr
Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes
J. Environ. Chem. Eng., 7 (6) (2019), Article 103460 | |
dc.relation | [16] S. Abraham, D. Rajamanick, B. Srinivasan
Preparation, characterization and cross-linking of chitosan by microwave assisted synthesis
Sci. Int., 6 (1) (2018), pp. 18-30 | |
dc.relation | [17] B. Zhang, R. Hu, D. Sun, T. Wu, Y. Li
Fabrication of chitosan/magnetite-graphene oxide composites as a novel bioadsorbent for adsorption and detoxification of Cr(VI) from aqueous solution
Sci. Rep., 8 (1) (2018), pp. 1-12 | |
dc.relation | [18] I.O. Saheed, O.W. Da, F.B.M. Suah
Chitosan modifications for adsorption of pollutants - a review
J. Hazard. Mater., 408 (2020), Article 124889 | |
dc.relation | [19] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto
Preparation of chitosan with different characteristics and its application for biofilms production
J. Polym. Environ., 23 (2015), pp. 470-477 | |
dc.relation | [20] H. Koseoglu
Biotemplated Luffa cylindrical for the oil spill clean-up from seawater
Desalin. Water Treat., 1–9 (2016) | |
dc.relation | [21] A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen
Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin
J. Hazard. Mater., 154 (1–3) (2008), pp. 184-191 | |
dc.relation | [22] J.O. Gonçalves, J.P. Santos, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A.A. Pinto
Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system
J. Mol. Liq., 225 (2017), pp. 265-270 | |
dc.relation | [23] R.M. Silverstein, F.X. Webster, D.J. Kiemle
Spectrometric Identification of Organic Compounds
John Wiley & Sons, New York (2007) | |
dc.relation | [24] R. Dash, M. Foston, A.J. Ragauskas
Improving the mechanical and thermal properties of gelatin hydrogels crosslinked by cellulose nanowhiskers
Carbohydr. Polym., 91 (2) (2013), pp. 638-645 | |
dc.relation | [25] H.Z. Freundlich
Over the adsorption in solution
J. Phys. Chem., 57 (1906), p. 385 | |
dc.relation | [26] I. Langmuir
The adsorption of gases on plane surfaces of glass, mica and platinum
J. Am. Chem. Soc., 40 (1918), pp. 1361-1403 | |
dc.relation | [27] R. Sips
On the structure of a catalyst surface
J. Chem. Phys., 16 (1948), pp. 490-495 | |
dc.relation | [28] G. Martínez-Mejíaa, N.A. Vázquez-Torres, A. Castell-Rodríguez, J.M. Río, M.C.R. Jiménez-Juárez
Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions
Colloids Surf. A Physicochem. Eng. Asp., 579 (2019) | |
dc.relation | [29] Q. Liu, N. Ji, L. Xiong, Q. Sun
Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking
Carbohydr. Polym., 246 (2020) | |
dc.relation | [30] V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik
Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution
Chem. Eng. Sci., 197 (2012), pp. 379-386 | |
dc.relation | [31] A.H. Jawad, A.S. Abdulhameed, A. Reghioua, Z.M. Yaseen
Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes
Int. J. Biol. Macromol., 163 (2020), pp. 756-765 | |
dc.relation | [32] V.B. Gavalyan
Synthesis and characterization of new chitosan-based Schiff base compounds
Carbohydr. Polym., 145 (2016), pp. 37-47 | |
dc.relation | [33] N. Nematidil, M. Sadeghi, S. Nezami, H. Sadeghi
Synthesis and characterization of Schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions
Carbohydr. Polym., 222 (2019) | |
dc.relation | [34] H.F.G. Barbosa, D.S. Francisco, A.P.G. Ferreira, E.T.G. Cavalheiro
A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR
Carbohydr. Polym., 255 (2019) | |
dc.relation | [35] D. Pathania, A. Sharma, V. Sethi
Microwave induced graft copolymerization of binary monomers onto luffa cylindrica fiber: removal of congo red
Procedia Eng., 200 (2017), pp. 408-415 | |
dc.relation | [36] Y. Wang, X. Wang, Y. Xiong, J. Fan, Z. Zheng, Y. Li, L. Dong, Z. Zhao
Extraction optimization, separation and antioxidant activity of Luffa cylindrica polysaccharides
Food Bioprod. Process., 116 (2019), pp. 98-104 | |
dc.relation | [37] A. Khadir, M. Negarestani, A. Mollahosseini
Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lignocellulosic material (Luffa cylindrica) reinforced with polypyrrole: study of parameters, kinetics, and equilibrium
J. Environ Chem. Eng., 8 (3) (2020) | |
dc.relation | [38] L. Poon, L.D. Wilson, J.V. Headley
Chitosan–glutaraldehyde copolymers and their sorption properties
Carbohydr. Polym., 109 (2014), pp. 92-101 | |
dc.relation | [39] R.R. Schio, B.C. Rosa, J.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto
Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye
Int. J. Biol. Macromol., 121 (2019), pp. 373-380 | |
dc.relation | [40] G.L. Dotto, J.M.N. Santos, E.H. Tanabe, D.A. Bertuol, E.L. Foletto, E.C. Lima, F.A. Pavan
Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions
J. Clean. Prod., 144 (2017), pp. 120-129 | |
dc.relation | [41] C.P. Pinheiro, L.M.K. Moreira, S.S. Alves, T.R.S. Cadaval Jr, L.A.A. Pinto
Anthocyanins concentration by adsorption onto chitosan and alginate beads: isotherms, kinetics and thermodynamics parameters
Int. J. Biol. Macromol., 166 (2021), pp. 934-939 | |
dc.relation | [42] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A.Ben Lamine
Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon
Fluid Phase Equil., 387 (2015), pp. 103-110 | |
dc.relation | [43] A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bédia, C. Bélver
Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modeling
Chem. Eng. J., 404 (2021), Article 126601 | |
dc.relation | [44] Y. Feng, Q. Liu, Y. Yu, Q. Kong, L. Zhou, Y. Du, X. Wang
Norfloxacin removal from aqueous solution using biochar derived from luffa sponge
J. Water Supply Res Technol., 67 (2018), pp. 703-714 | |
dc.relation | [45] S. Li, M. Tao, Y. Xie
Reduced graphene oxide modified luffa sponge as a biocomposite adsorbent for effective removal of cationic dyes from aqueous solution
Desalin. Water Treat., 1–9 (2015) | |
dc.relation | [46] Y. Wang, Q. Liu, L. Shu, M. Miao, Y. Liu, Q. Kong
Removal of Cr(VI) from aqueous solution using Fe-modified activated carbon prepared from luffa sponge: kinetic, thermodynamic, and isotherm studies
Desalin. Water Treat., 1–12 (2016) | |
dc.relation | [47] H. Nadaroglu, S. Cicek, A.A. Gungor
Removing Trypan blue dye using nano-Zn modified Luffa sponge
Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 172 (2016), pp. 2-8 | |
dc.relation | [48] A. Shahidi, N. Jalilnejad, E. Jalilnejad
A study on adsorption of cadmium(II) ions from aqueous solution using Luffa cylindrica
Desalin. Water Treat., 53 (2015), pp. 3570-3579 | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | International Journal of Biological Macromolecules | |
dc.source | https://www.sciencedirect.com/science/article/pii/S0141813021022534#! | |
dc.subject | Luffa cylindrica | |
dc.subject | Crosslinked | |
dc.subject | Chitosan | |
dc.subject | Adsorption | |
dc.title | Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption | |
dc.type | Pre-Publicación | |
dc.type | http://purl.org/coar/resource_type/c_816b | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/preprint | |
dc.type | info:eu-repo/semantics/draft | |
dc.type | http://purl.org/redcol/resource_type/ARTOTR | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |