The generalized Fermat conjecture
La conjetura generalizada de Fermat
dc.creator | García-Máynez, Adalberto | |
dc.creator | Gary, Margarita | |
dc.creator | Pimienta Acosta, Adolfo | |
dc.date | 2019-05-15T13:47:03Z | |
dc.date | 2019-05-15T13:47:03Z | |
dc.date | 2018-05-05 | |
dc.date.accessioned | 2023-10-03T20:02:29Z | |
dc.date.available | 2023-10-03T20:02:29Z | |
dc.identifier | 01399918 | |
dc.identifier | http://hdl.handle.net/11323/3331 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174075 | |
dc.description | If a, b, c are non-zero integers, we considerer the following problem: for which values of n the line ax + by + cz = 0 may be tangent to the curve x n + y n = z n ? We give a partial solution: if n = 5 or if n-1 is a prime a number, then the answer is the line cannot be tangent to the curve. This problem is strongly related to Fermat' s Last Theorem. | |
dc.description | Si a, b, c son enteros distintos de cero, consideramos el siguiente problema: ¿para qué valores de n la línea ax + by + cz = 0 pueden ser tangentes a la curva x n + y n = z n? Damos una solución parcial: si n = 5 o si n-1 es un número primo, entonces la respuesta es que la línea no puede ser tangente a la curva. Este problema está fuertemente relacionado con el último teorema de Fermat. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de la Costa | |
dc.relation | Fine, B.—Rosenberger, G.: Classification of all generating pairs of two generator Fuchsian groups. In: London Math. Soc. Lecture Note Ser. 211, 1995, pp. 205–232. Garling, D. J. H.: A Course in Galois Theory, Cambridge University Press, 1986. Lang, S.: Cyclotomic Fields I and II. Graduate Texts in Math. 121, Springer-Verlag, New York, 1990. Silverman, J. H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Math. 151, Springer-Verlag, New York, 1994. Washington, L.: Introduction to Cyclotomic Fields. Graduate Texts in Math., Springer-Verlag, New York, 1996. Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 141 (1995), 443–55 | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Chebyshev polynomials | |
dc.subject | Fermat curve | |
dc.subject | Tangent | |
dc.subject | Polinomios de Chebyshev | |
dc.subject | Curva de Fermat | |
dc.subject | Tangente | |
dc.title | The generalized Fermat conjecture | |
dc.title | La conjetura generalizada de Fermat | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa |