dc.creatorSilva, Luis F.O.
dc.creatorPinto, Diana
dc.creatorOliveira, Marcos L.S.
dc.creatorDotto, Guilherme L.
dc.date2021-06-29T21:43:05Z
dc.date2021-06-29T21:43:05Z
dc.date2021
dc.date.accessioned2023-10-03T20:02:00Z
dc.date.available2023-10-03T20:02:00Z
dc.identifierhttps://hdl.handle.net/11323/8440
dc.identifierhttps://doi.org/10.1016/j.marpolbul.2021.112493
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174014
dc.descriptionAnthropogenic occurring nanoparticles (NPs) have been one of the principal catalytic components of marine pollution throughout its history. The phosphogypsum (PG) factories present environmental risks and evident marine pollution in different parts of the world. Many of these factors continue to operate, however, some have already been abandoned by the private sector. The general objective of this manuscript is to analyze the real nanoparticles (NPs) present on a beach in southern Brazil to illustrate the need to create public policies and projects for environmental recovery. This work focused on real representative sampling of suspended sediments (SSs), and on a modern analytical procedure via advanced electron microscopes (field emission scanning electron microscope-FE-SEM and high resolution transmission electron microscope-HR-TEM coupled with an energy dispersive X-ray microanalysis system-EDS) to analyze NPs containing hazardous elements (HEs). The results presented in this work demonstrate who the size, morphology, among other physical-geochemical characteristics influence in the adsorption of HEs by the NPs and their respective agglomerates. This study is of great importance for carrying out the application of advanced techniques and methods to better understand the formation and transport of NPs on beaches, which allows assisting in the management of waste from plaster factories on a global scale.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationV.G. Alexandratos, E.J. Elzinga, R.J. Reeder Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms Geochim. Cosmochim. Acta, 71 (17) (2007), pp. 4172-4187
dc.relationA.P. Alivisatos Perspectives on the physical chemistry of semiconductor nanocrystals J. Phys. Chem., 100 (1996), pp. 13226-13239
dc.relationB.J. Alloway B.J. Alloway (Ed.), Sources of Heavy Metals and Metalloids in Soils. in: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, Springer Netherlands, Dordrecht (2013), pp. 11-50
dc.relationA.E. Alprol, M.S. Gaballah, M.A. Hassaan Micro and Nanoplastics analysis: focus on their classification, sources, and impacts in marine environment Reg. Stud. Mar. Sci., 42 (2021), p. 101625
dc.relationM. Anke, O. Seeber, R. Müller, U. Schäfer, J. Zerull Uranium transfer in the food chain from soil to plants, animals and man Geochemistry, 69 (2009), pp. 75-90
dc.relationG.E. Brown Jr., G. Calas Environmental mineralogy - understanding element behavior in ecosystems Compt. Rendus Geosci., 343 (2–3) (2011), pp. 90-112
dc.relationG.E. Brown, V.E. Henrich, W.H. Casey, D.L. Clark, C. Eggleston, A. Felmy, D.W. Goodman, M. Gratzel, G. Maciel, M.I. McCarthy, K.H. Nealson, D.A. Sverjensky, M.F. Toney, J.M. Zachara Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms Chem. Rev., 99 (1999), pp. 77-174
dc.relationL. Calderón-Garcidueñas, A. González-Maciel, R. Reynoso-Robles, J. Hammond, R. Kulesza, I. Lachmann, R. Torres-Jardón, P.S. Mukherjee, B.A. Maher Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal Environ. Res., 191 (2020), p. 110139
dc.relationC. Cánovas, R. Pérez-López, F. Macías, S. Chapron, J. Nieto, S. Pellet-Rostaing Exploration of fertilizer industry wastes as potential source of critical raw materials J. Clean. Prod., 143 (2017), pp. 497-505
dc.relationC.R. Cánovas, F. Macías, R. Pérez-López, M.D. Basallote, R. Millán-Becerro Valorization of wastes from the fertilizer industry: current status and future trends J. Clean. Prod., 174 (2018), pp. 678-690
dc.relationV.L. Cariccio, A. Samà, P. Bramanti, E. Mazzon Mercury involvement in neuronal damage and in neurodegenerative diseases Biol. Trace Elem. Res., 187 (2019), pp. 341-356
dc.relationM.S. Civeira, C.G. Ramos, M.L.S. Oliveira, R.M. Kautzmann, S.R. Taffarel, E.C. Teixeira, L.F.O. Silva Nano-mineralogy of suspended sediment during the beginning of coal rejects spill Chemosphere, 145 (2016), pp. 142-147
dc.relationA.C. Dalmora, C.G. Ramos, X. Querol, R.M. Kautzmann, M.L.S. Oliveira, S.R. Taffarel, T. Moreno, L.F.O. Silva Nanoparticulate mineral matter from basalt dust wastes Chemosphere, 144 (2016), pp. 2013-2017
dc.relationH.T. Davis, C.M. Aelion, S. McDermott, A.B. Lawson Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation Environ. Pollut., 157 (2009), pp. 2378-2385
dc.relationA.L. Duarte, K. Daboit, M.L.S. Oliveira, E.C. Teixeira, I.L. Schneider, L.F.O. Silva Hazardous elements and amorphous nanoparticles in historical estuary coal mining area Geosci. Front., 10 (3) (2019), pp. 927-939
dc.relationM. Dutta, J. Saikia, S.R. Taffarel, F.B. Waanders, D. de Medeiros, C.M.N.L. Cutruneo, L.F.O. Silva, B.K. Saikia Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage Geosci. Front., 8 (6) (2017), pp. 1285-1297
dc.relationR. El Zrelli, L. Rabaoui, N. Daghbouj, H. Abda, S. Castet, C. Josse, P. van Beek, M. Souhaut, S. Michel, N.J.E.S. Bejaoui, P. Research Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection Environ. Sci. Pollut. Res., 25 (2018), pp. 14690-14702
dc.relationR. El Zrelli, L. Rabaoui, H. Abda, N. Daghbouj, R. Pérez-López, S. Castet, T. Aigouy, N. Bejaoui, P. Courjault-Radé Characterization of the role of phosphogypsum foam in the transport of metals and radionuclides in the Southern Mediterranean Sea J. Hazard. Mater., 363 (2019), pp. 258-267
dc.relationY. Gao, R. Wahi, A.T. Kan, J.C. Falkner, V.L. Colvin, A.B. Tomson Adsorption of cadmium on anatase nanoparticles-effect of crystal size and pH Langmuir, 20 (2004), pp. 9585-9593
dc.relationA. Gredilla, S.F.O. de Vallejuelo, A. Rodriguez-Iruretagoiena, L. Gomez, M.L.S. Oliveira, G. Arana, A. de Diego, J.M. Madariaga, L.F.O. Silva Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust J. Hazard. Mater., 378 (2019), p. 120747
dc.relationJ.L. Guerrero, S.M. Pérez-Moreno, I. Gutiérrez-Álvarez, M.J. Gázquez, J.P. Bolívar Behaviour of heavy metals and natural radionuclides in the mixing of phosphogypsum leachates with seawater Environ. Pollut., 268 (2021), p. 115843
dc.relationA. Hagfeldt, M. Gratzel Light-induced redox reactions in nanocrystalline systems Chem. Rev., 95 (1995), pp. 49-68
dc.relationY.T. He, J.M. Wan, T. Tokunaga Kinetic stability of hematite nanoparticles: the effect of particle sizes J. Nanopart. Res., 10 (2008), pp. 321-332
dc.relationL. Hund, E.J. Bedrick, C. Miller, G. Huerta, T. Nez, S. Ramone, C. Shuey, M. Cajero, J. Lewis A Bayesian framework for estimating disease risk due to exposure to uranium mine and mill waste on the Navajo nation J. R. Stat. Soc., 178 (4) (2015), pp. 1069-1091
dc.relationG. Jegadeesan, S.R. Al-Abed, V. Sundaram, H. Choi, K.G. Scheckel, D.D. Dionysiou Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects Water Res., 44 (2010), pp. 965-973
dc.relationM. Jović, S. Stanković Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area Food Chem. Toxicol., 70 (2014), pp. 241-251
dc.relationC. Li, P.L. Xue, W.J. Zhang, X.F. Sun, H. Gao Current situation and green development countermeasures of phosphogypsum disposal in China Environ. Prot. Ind. Chem., 41 (2021), pp. 102-106
dc.relationS.F. Lütke, M.L.S. Oliveira, L.F.O. Silva, T.R.S. Cadaval, G.L. Dotto Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry Chemosphere, 256 (2020), p. 127138
dc.relationF. Macías, C.R. Cánovas, P. Cruz-Hernández, S. Carrero, M.P. Asta, J.M. Nieto, R. Pérez-López An anomalous metal-rich phosphogypsum: characterization and classification according to international regulations J. Hazard. Mater., 331 (2017), pp. 99-108
dc.relationC. Marshall, D.J. Large, N.G. Heavens Coal-derived rates of atmospheric dust deposition during the Permian Gondwana Res., 31 (2016), pp. 20-29
dc.relationN.W. Menzies, M.J. Donn, P.M. Kopittke Evaluation of extractants for estimation of the phytoavailable trace metals in soils Environ. Pollut., 145 (2017), pp. 121-130
dc.relationB.R.da.S.C. Morales, A. García-Martínez, P. Pineda, R. García-Tenório Valorization of phosphogypsum in cement-based materials: limits and potential in eco-efficient construction J. Build. Eng., 102506 (2021)
dc.relationN. Mosbahi, M.M. Serbaji, J.-P. Pezy, L. Neifar, J.C. Dauvin Response of benthic macrofauna to multiple anthropogenic pressures in the shallow coastal zone south of Sfax (Tunisia, central Mediterranean Sea) Environ. Pollut., 253 (2019), pp. 474-487
dc.relationA. Neckel, C. Korcelski, H.A. Kujawa, I.S.da. Silva, F. Prezoto, A.L.W. Amorin, L.S. Maculan, A.C. Gonçalves, E.T. Bodah, B.W. Bodah Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability Chemosphere, 262 (2021), p. 128248
dc.relationM.J. Nematollahi, F. Moore, B. Keshavarzi, R.D. Vogt, H.N. Saravi, R. Busquets Microplastic particles in sediments and waters, south of Caspian Sea: frequency, distribution, characteristics, and chemical composition Ecotoxicol. Environ. Saf., 206 (2020), p. 111137
dc.relationM.O. Neves, M.M. Abreu, V. Figueiredo Uranium in vegetable foodstuffs: should residents near the cunha baixa uranium mine site (central northern Portugal) be concerned? Environ. Geochem. Health, 34 (2) (2011), pp. 181-189
dc.relationM.L.S. Oliveira, C.R. Ward, M. Izquierdo, C.H. Sampaio, I.A.S. de Brum, R.M. Kautzmann, S. Sabedot, X. Querol, L.F.O. Silva Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant Sci. Total Environ., 430 (2012), pp. 34-47
dc.relationM.L.S. Oliveira, B.K. Saikia, K.da. Boit, D. Pinto, B.F. Tutikian, L.F.O. Silva River dynamics and nanopaticles formation: a comprehensive study on the nanoparticle geochemistry of suspended sediments in the magdalena river, caribbean industrial area J. Clean. Prod., 213 (2019), pp. 819-824
dc.relationM.L.S. Oliveira, A. Neckel, L.F.O. Silva, G.L. Dotto, L.S. Maculan Environmental aspects of the depreciation of the culturally significant wall of Cartagena de Indias – Colombia Chemosphere, 265 (2021), p. 129119
dc.relationK.N. Palansooriya, S.M. Shaheen, S.S. Chen, D.C.W. Tsang, Y. Hashimoto, D. Hou, N.S. Bolan, J. Rinklebe, Y.S. Ok Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review Environ. Int., 134 (2020), p. 105046
dc.relationK.L. Plathe, F. von der Kammer, M. Hassellov, J. Moore, M. Murayama, T. Hofmann, M.F. Hochella Using FlFFF and aTEM to determine trace metal–nanoparticle associations in riverbed sediment Environ. Chem., 7 (2009), pp. 82-93
dc.relationM.W. Porambo, H.R. Howard, A.L. Marsh Dopant effects on the photocatalytic activity of colloidal zinc sulfide semiconductor nanocrystals for the oxidation of 2-chlorophenol J. Phys. Chem. C, 114 (2010), pp. 1580-1585
dc.relationA. Rekik, Z. Drira, W. Guermazi, L. Aleya, H. Ayadi Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast Mar. Pollut. Bull., 64 (2012), pp. 336-346
dc.relationA.S. Saleh, J.Y. Lee, Y. Jo, J.I. Yun Uranium(VI) sorption complexes on silica in the presence of calcium and carbonate J. Environ. Radioact., 182 (2018), pp. 63-69
dc.relationL.F.O. Silva, J.C. Hower, M. Izquierdo, X. Querol Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure Sci. Total Environ., 408 (21) (2010), pp. 5117-5122
dc.relationL.F.O. Silva, D. Pinto, A. Neckel, M.L.S. Oliveira An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces Geosci. Front., 11 (6) (2020), pp. 2053-2060
dc.relationL.F.O. Silva, L.P. Lozano, M.L.S. Oliveira, K.da. Boit, J.O. Gonçalves, A. Neckel Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects Mar. Pollut. Bull., 168 (2021), p. 112425
dc.relationM.D. Syczewski, A. Borkowski, A. Gąsiński, J. Raczko, K. Mordak, I. Grądziel, M. Krzesicka, M. Kałaska, R. Siuda Phosphogypsum and clay mineral/phosphogypsum ceramic composites as useful adsorbents for uranium uptake Appl. Geochem., 123 (2020), p. 104793
dc.relationP.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton Heavy metal toxicity and the environment Experientia Suppl. (2012), pp. 133-164
dc.relationM. Tsioka, E.A. Voudrias Comparison of alternative management methods for phosphogypsum waste using life cycle analysis J. Clean. Prod., 266 (2020), p. 121386
dc.relationJ. Xie, J. Wang, J. Lin New insights into the role of calcium in the bioreduction of uranium(VI) under varying pH conditions J. Hazard. Mater., 411 (2021), p. 125140
dc.relationL. Yang, Y. Zhang, Y. Yan Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar J. Clean. Prod., 127 (2016), pp. 204-213
dc.relationQ. Yang, Z. Li, X. Lu, Q. Duan, L. Huang, J. Bi A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment Sci. Total Environ., 642 (2018), pp. 690-700
dc.relationS. Yean, L. Cong, C.T. Yavuz, J.T. Mayo, W.W. Yu, A.T. Kan, V.L. Colvin, M.B. Tomson Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate J. Mater. Res., 20 (2005), pp. 3255-3264
dc.relationX.F. Zha, Y.J. Qin, P. Wu, Z.W. Han, X.X. Li, H.J. Ye, L. Li Geochemical processes of karst groundwater under the influence of seepage from phosphogypsum storage sites Chin. J. Ecol., 37 (2018), pp. 1708-1715
dc.relationH.Z. Zhang, R.L. Penn, R.J. Hamers, J.F. Banfield Enhanced adsorption of molecules on surfaces of nanocrystalline particles J. Phys. Chem. B, 103 (1999), pp. 4656-4662
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceMarine Pollution Bulletin
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0025326X21005270
dc.subjectNanoparticles
dc.subjectImpacted beaches
dc.subjectHazardous elements
dc.subjectPhosphogypsum
dc.subjectAbandoned industry
dc.titleDispersion of hazardous nanoparticles on beaches around phosphogypsum factories
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución