dc.creatorVarela, Noel
dc.creatorOspino, Cesar
dc.creatorPineda Lezama, Omar Bonerge
dc.date2021-01-05T21:46:12Z
dc.date2021-01-05T21:46:12Z
dc.date2020
dc.date.accessioned2023-10-03T20:01:50Z
dc.date.available2023-10-03T20:01:50Z
dc.identifier1877-0509
dc.identifierhttps://hdl.handle.net/11323/7661
dc.identifierhttps://doi.org/10.1016/j.procs.2020.07.096
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173997
dc.descriptionThere are currently countless applications that can be cited in different areas of research and industry, where the data are represented in the form of time series. In the last few years, a dramatic explosion in the amount of time series ha occurred, so their analysis plays a very important role, since it permits to understand the phenomena described. A "time series" is a set of data of a certain phenomenon or equation, sequentially recorded. An alternative that allows to know the behavior and dynamics of a set of time series has been presented in the problem of classification, however, it is necessary to mention that most of the phenomena found in real life do not have a classification and that is why the unsupervised classification has brought great interest. Classification is organizing and categorizing objects into different, unlabeled classes or groups, which must be coherent or homogeneous [1][2]. This research proposes a methodology for obtaining the unsupervised classification of a set of time series using an unsupervised approach.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] Yan, S., Song, H., Li, N., Zou, L., & Ren, L. (2020). Improve Unsupervised Domain Adaptation with Mixup Training. arXiv preprint arXiv:2001.00677.
dc.relation[2] Hunter, F. D., Mitchard, E. T., Tyrrell, P., & Russell, S. (2020). Inter-Seasonal Time Series Imagery Enhances Classification Accuracy of Grazing Resource and Land Degradation Maps in a Savanna Ecosystem. Remote Sensing, 12(1), 198.
dc.relation[3] Yan, K., Huang, J., Shen, W., & Ji, Z. (2020). Unsupervised learning for fault detection and diagnosis of air handling units. Energy and Buildings, 210, 109689.
dc.relation[4] Franceschi, J. Y., Dieuleveut, A., & Jaggi, M. (2019). Unsupervised scalable representation learning for multivariate time series. In Advances in Neural Information Processing Systems (pp. 4652-4663).
dc.relation[5] Paris, C., Bruzzone, L., & Fernández-Prieto, D. (2019). A Novel Approach to the Unsupervised Update of Land-Cover Maps by Classification of Time Series of Multispectral Images. IEEE Transactions on Geoscience and Remote Sensing, 57(7), 4259-4277.
dc.relation[6] Wang, S., Azzari, G., & Lobell, D. B. (2019). Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote sensing of environment, 222, 303-317.
dc.relation[7] Viloria, A., Sierra, D. M., de la Hoz, L., Bohórquez, M. O., Bilbao, O. R., Pichón, A. R., … Hernández-Palma, H. (2020). NoSQL Database for Storing Historic Records in Monitoring Systems: Selection Process. In Advances in Intelligent Systems and Computing (Vol. 1039, pp. 336–344). Springer. https://doi.org/10.1007/978-3-030-30465-2_38
dc.relation[8] Bode, G., Schreiber, T., Baranski, M., & Müller, D. (2019). A time series clustering approach for Building Automation and Control Systems. Applied energy, 238, 1337-1345.
dc.relation[9] Ukil, A., Bandyopadhyay, S., & Pal, A. (2019, July). DyReg-FResNet: Unsupervised Feature Space Amplified Dynamic Regularized Residual Network for Time Series Classification. In 2019 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8).
dc.relation[10] Kim, H., Kim, H. K., Kim, M., Park, J., Cho, S., Im, K. B., & Ryu, C. R. (2019). Representation learning for unsupervised heterogeneous multivariate time series segmentation and its application. Computers & Industrial Engineering, 130, 272-281.
dc.relation[11] Modak, S., Chattopadhyay, T., & Chattopadhyay, A. K. (2020). Unsupervised classification of eclipsing binary light curves through kmedoids clustering. Journal of Applied Statistics, 47(2), 376-392.
dc.relation[12] Punmiya, R., Zyabkina, O., Choe, S., & Meyer, J. (2019, June). Anomaly Detection in Power Quality Measurements Using Proximity-Based Unsupervised Machine Learning Techniques. In 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (pp. 1-6). IEEE.
dc.relation[13] Ryabko, D. (2019). Time-series information and unsupervised learning of representations. IEEE Transactions on Information Theory.
dc.relation[14] Yan, S., Song, H., Li, N., Zou, L., & Ren, L. (2020). Improve Unsupervised Domain Adaptation with Mixup Training. arXiv preprint arXiv:2001.00677.
dc.relation[15] Viloria, A., Lis-Gutiérrez, J. P., Gaitán-Angulo, M., Stanescu, C. L. V., & Crissien, T. (2020). Machine Learning Applied to the H Index of Colombian Authors with Publications in Scopus. In Smart Innovation, Systems and Technologies (Vol. 167, pp. 388–397). Springer. https://doi.org/10.1007/978-981-15-1564-4_36.
dc.relation[16] Pereira, J., & Silveira, M. (2019, February). Learning representations from healthcare time series data for unsupervised anomaly detection. In 2019 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 1-7). IEEE.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceProcedia Computer Science
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1877050920317968
dc.subjectUnsupervised classifier
dc.subjectTime series
dc.subjectAssembly of grouping algorithms
dc.titleMethodology for processing time series using machine learning
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución