dc.creatorSoto, E.H.
dc.creatorBotero, C. M.
dc.creatorMilanés Batista, Celene
dc.creatorRodríguez-Santiago, A.
dc.creatorPalacios-Moreno, M.
dc.creatorDíaz-Ferguson, E.
dc.creatorVelázquez, Y. R.
dc.creatorAbbehusen, A.
dc.creatorGuerra-Castro, E.
dc.creatorSimoes, N.
dc.creatorMuciño-Reyes, M.
dc.creatorSouza Filho, J. R.
dc.date2021-02-11T20:49:48Z
dc.date2021-02-11T20:49:48Z
dc.date2021-03
dc.date.accessioned2023-10-03T20:01:42Z
dc.date.available2023-10-03T20:01:42Z
dc.identifier0006-3207
dc.identifierhttps://hdl.handle.net/11323/7864
dc.identifierhttps://doi.org/10.1016/j.biocon.2021.108972
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173979
dc.descriptionUrban tourist beach ecosystems provide the essential service of recreation. These ecosystems also support critical ecological functions where biodiversity conservation is not usually a priority. The sudden lockdown due to the COVID-19 pandemic created a unique opportunity to evaluate the effects of human absence in these urban-coastal ecosystems. This study examined bioindicators from 29 urban tourist beaches in seven Latin-American countries and assesses their response to lockdown about some relevant anthropogenic stressors such as pollution, noise, human activities, and user density. The presence of animals and plants, as well as the intensity of stressors, were assessed through a standardized protocol during lockdown conditions. Additionally, the environmental conditions of the beaches before and during lockdown were qualitatively compared using multivariate non-parametric statistics. We found notable positive changes in biological components and a clear decrease in human stressors on almost all the beaches. Dune vegetation increased on most sites. Similarly, high burrow densities of ghost crabs were observed on beaches, except those where cleaning activity persisted. Because of the lockdown, there was an exceptionally low frequency of beach users, which in turn reduced litter, noise and unnatural odors. The observed patterns suggest that tourist beaches can be restored to natural settings relatively quickly. We propose several indicators to measure changes in beaches once lockdown is relaxed. Adequate conservation strategies will render the recreational service of tourist beaches more environmental-friendly.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAfghan, A., Cerrano, C., Luzi, G., Calcinai, B., Puce, S., Pulido Mantas, T., Roveta, C., Di Camillo, C.G., 2020. Main anthropogenic impacts on benthic macrofauna of sandy beaches: a review. J. Mar. Sci. Eng. 8, 405.
dc.relationAmyot, J., Grant, J., 2014. Environmental Function Analysis: a decision support tool for integrated sandy beach planning. Ocean Coast. Manag. 102, 317–327. https://doi. org/10.1016/j.ocecoaman.2014.10.009.
dc.relationAndres,´ M., Barragan, J.M., Garcia-Sambria, J., 2017. Relationships between coastal urbanization and ecosystems in Spain. CITIES 68, 8–17.
dc.relationAraújo, M., Silva-Cavalcanti, J., Costa, M., 2018. Anthropogenic litter on beaches with different levels of development and use: a snapshot of a coast in Pernambuco (Brazil). Front. Mar. Sci. 5, 233. https://doi.org/10.3389/fmars.2018.00233.
dc.relationAriza, E., Sarda, ´ R., Jimenez, ´ J.A., Mora, J., Avila, ´ C., 2007. Beyond performance assessment measurements for beach management: application to Spanish Mediterranean beaches. Coast. Manag. 36 (1), 47–66. https://doi.org/10.1080/ 08920750701682023.
dc.relationBates, A.E., Primack, R., Moraga, P., Duarte, C., 2020. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108,665. doi.org/https://doi.org/10 .1016/j.biocon.2020.108665.
dc.relationBatista-Milan´es, C., 2018. Coastal risk. In: Finkl, C., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, 2nd, 1. Springer Nature, Cham, Switzerland, pp. 524–534.
dc.relationBecken, S., 2016. Climate Change Impacts on Coastal Tourism. CoastAdapt Impact Sheet. National Climate Change Adaptation Research Facility, Gold Coast, p. 6.
dc.relationBessa, F., Gonçalves, S.C., Franco, J., Andre,´ J., Cunha, P., Marques, J., 2014. Temporal changes in macrofauna as response indicator to potential human pressures on sandy beaches. Ecol. Indic. 41, 49–57.
dc.relationBir, B., 2020. https://www.aa.com.tr/en/health/single-use-items-not-safest-option-am idcovid-19/1787067. (Accessed 4 September 2020).
dc.relationBirk, S., Chapman, D., Carvalho, L., et al., 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068. https://doi.org/10.1038/s41559-020-1216-4.
dc.relationBlankensteyn, A., 2006. O uso do caranguejo maria-farinha Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) como indicador de impactos antropogenicos ˆ em praias arenosas da Ilha de Santa Catarina, Santa Catarina, Brasil. Rev. Bras. de Zool. 23 (3), 870–876. https://doi.org/10.1590/S0101-81752006000300034.
dc.relationBom, F., Colling, L., 2020. Impact of vehicles on benthic macrofauna on a subtropical sand beach. Mar. Ecol. 41, e12595 https://doi.org/10.1111/maec.12595.
dc.relationBotero, C., Pereira, C., Tosic, M., Manjarrez, G., 2015. Design of an index for monitoring the environmental quality of tourist beaches from a holistic approach. Ocean Coast. Manag. 108, 65–73. https://doi.org/10.1016/j.ocecoaman.2014.07.017.
dc.relationBotero, C.M., Cabrera, J.A., Zielinski, S., 2018. Tourist beaches. In: Finkl, C., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48,657-4_ 401–1.
dc.relationBoudouresque, C.F., Ponel, P., Astruch, P., Barcelo, A., Blanfune,´ A., Geoffroy, D., Thibaut, T., 2017. The high heritage value of the Mediterranean sandy beaches, with a particular focus on the Posidonia oceanica “banquettes”: a review. Sci. Rep. Port- Cros Natl. Park 31, 23–70.
dc.relationBoyes, K., 2016. Applying Wildlife Conservation Tourism to Marine Endangered Species: Identifying Indicators for Triple Bottom Line Sustainability. University of Washington (Master of Marine Affairs Thesis, 78 pages).
dc.relationBracken, M., Friberg, S., Gonzalez-Dorantes, C., Williams, S., 2008. Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc. Natl. Acad. Sci. U. S. A. 105, 924–928.
dc.relationBrown, A., McLachlan, A., 2002. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Env. Conserv. 29, 62–77. https://doi.org/ 10.1017/S037689290200005X.
dc.relationCanning-Clode, J., Sepúlveda, P., Almeida, S., Monteiro, J., 2020. Will COVID-19 containment and treatment measures drive shifts in marine litter pollution? Front. Mar. Sci. 7, 691. https://doi.org/10.3389/fmars.2020.00691.
dc.relationCanteiro, M., Cordova-Tapia, ´ F., Brazeiro, A., 2018. Tourism impact assessment: a tool to evaluate the environmental impacts of touristic activities in Natural Protected Areas. Tour. Manag. Pers. 28, 220–227. https://doi.org/10.1016/j.tmp.2018.09.007.
dc.relationClarke, K., 1993. Non-parametric multivariate analyses of changes in community structure. Austral. Jour. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442- 9993.1993.tb00438.x.
dc.relationClarke, K., Gorley, R., Somerfield, P., Warwick, R., 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. In: Plymouth. Ltd, PRIMER-E.
dc.relationCristiano, S.C., Rockett, G.C., Portz, L.C., Souza Filho, J.R., 2020. Beach landscape management as a sustainable tourism resource in Fernando de Noronha Island (Brazil). Mar. Poll. Bull. 150, 1–13. https://doi.org/10.1016/j. marpolbul.2019.110621.
dc.relationDavis, R.A., 2019. Human impact on coasts. In: Finkl, C.W., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-93,806-6_175.
dc.relationDefeo, O., McLachlan, A., Schoeman, D.S., Schlacher, T.A., Dugan, J., Jones, A., Lastra, M., Scapini, F., 2009. Threats to sandy beach ecosystems: a review. Est. Coast. Shelf Sci. 81, 1–12. https://doi.org/10.1016/j.ecss.2008.09.022.
dc.relationDerryberry, E.P., Phillips, J.N., Derryberry, G.E., Blum, M.J., Luther, D., 2020. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 340, 574–579.
dc.relationDodds, R., Holmes, M., 2019a. Beach tourists; what factors satisfy them and drive them to return. Ocean Coast. Manag. 168, 158–166. https://doi.org/10.1016/j. ocecoaman.2018.10.034.
dc.relationDodds, R., Holmes, M.R., 2019b. Preferences at city and rural beaches: are the tourists different? Jour. of Coast. Res. 36 (2), 393–402. https://doi.org/10.2112/ JCOASTRES-D-19-00048.1.
dc.relationFrancis, C., Ortega, C., Cruz, A., 2009. Noise pollution changes avian communities and species interactions. Curr. Biol. 19 (16), 1415–1419. DOI: doi:https://doi. org/10.1016/j.cub.2009.06.052.
dc.relationGaynor, K., Hojnowski, C., Carter, N., Brashares, J., 2018. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235. https://doi.org/ 10.1126/science.aar7121.
dc.relationGheskiere, T., Vincx, M., Weslawski, J.M., Scapini, F., Degraer, S., 2005. Meiofauna as descriptor of tourism-induced changes at sandy beaches. Mar Environ Res. 60 (2), 245–65. DOI: https://doi.org/10.1016/j.marenvres.2004.10.006. Epub 2004 Dec 7. PMID: 15757751.
dc.relationGilby, B.L., Henderson, C.J., Olds, A.D., Ballantyne, J.A., Bingham, E.L., Elliott, B.B., Jones, T.R., Kimber, O., Mosman, J.D., Schlacher, T.A., 2021. Negative ecological consequences of animal redistribution on beaches during COVID-19 lockdown. Biol Conserv. 253, 108926.
dc.relationGORC, 2000. Decreto-Ley 212. Gestion´ de la Zona Costera. Official Gazette of the Republic of Cuba. Citma. Cuba, La Habana, p. 18.
dc.relationGreen, R., Giese, M., 2004. Negative effects of wildlife tourism on wildlife. Chapter 5, part. Wildlife Tourism. Impacts, Management and Planning. Editor, Karen Higginbottom, In, p. 2.
dc.relationGuerra-Castro, E., Hidalgo, G., Castillo, R., Mucino-Reyes, ˜ M., Norena-Barroso, ˜ E., Quiroz-Deaquino, J., Mascaro, M., Simoes, N., 2020. Sandy beach macrofauna of Yucatan ´ State (Mexico) and oil industry development in the Gulf of Mexico: first approach for detecting environmental impacts. Front. Mar. Sci. 7, 589656 https:// doi.org/10.3389/fmars.2020.589656.
dc.relationHalpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008. A global map of human impact on marine ecosystems. Science 319, 948. https://doi. org/10.1126/science.1149345.
dc.relationHalpern, B.S., Frazier, M., Afflerbach, J., Lowndes, J.S., Micheli, F., O’Hara, C., Scarborough, C., Selkoe, K.A., 2019. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11,609. doi.org/https://doi. org/10.1038/s41598-019-47,201-9.
dc.relationHarley, C., Hughes, A., Hultgren, K., Miner, B., Sorte, C., Thornber, C., Rodriguez, L., Tomanek, L., Williams, S., 2006. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871. x.
dc.relationHarris, L., Nel, R., Holness, S., Sink, K., Schoeman, D., 2014. Setting conservation targets for sandy beach ecosystems. Est. Coast. Shelf. Sci. 150, 45–57.
dc.relationHockings, M., Dudley, N., Elliott, W., Ferreira, M., Mackinnon, K., Pasha, M., Phillips, A., Stolton, S., Woodley, S., Appleton, M., Chassot, O., Fitzsimons, J., Galliers, C., Golden Kroner, R., Goodrich, J., Hopkins, J, Jackson, W., Jonas, H., Long, B., Yang, A. 2020. COVID-19 and protected and conserved areas. Parks. 26, 7–24. https://doi. org/10.2305/IUCN.CH.2020.PARKS-26-1MH.en.
dc.relationIoannides, D., Gyimothy, ´ S., 2020. The COVID-19 crisis as an opportunity for escaping the unsustainable global tourism path. Tour. Geogr. 22 (3), 624–632. https://doi. org/10.1080/14616688.2020.1763445.
dc.relationJaramillo, E., 2012. Ecological implications of extreme events on exposed sandy beaches: insights from the 2010 Chilean earthquake. In: VI th International Sandy Beach Symposium. Public Presentation, SouthAfrica. In: June 26th.
dc.relationJarratt, D., Davies, N., 2019. Planning for climate change impacts: coastal tourism destination resilience policies. Tour. Plann. and Develop 17 (4), 423–440. https:// doi.org/10.1080/21568316.2019.1667861.
dc.relationJones, A., Gladstone, W., Hacking, N., 2007. Australian sandy-beach ecosystems and climate change: ecology and management. Zoologist 34 (2), 190–202. https://doi. org/10.7882/AZ.2007.018.
dc.relationKühn, S., Bravo, E., van Franeker, J., 2015. Deleterious effects of litter on marine life. In: Bergmann, M., Gutow, L., Klages, M. (Eds.), Marine Anthropogenic Litter. Springer International Publishing, Cham, pp. 75–116.
dc.relationLegendre, P., Legendre, L., 2012. Numerical Ecology. Elsevier, Amsterdam.
dc.relationLucrezi, S., Schlacher, T.A., 2014. The ecology of ghost crabs. Oce. and Mar. Biol: An Ann. Rev. 52, 201–256.
dc.relationLucrezi, S., Schlacher, T.A., Walker, S., 2009. Monitoring human impacts on sandy shore ecosystems: a test of ghost crabs (Ocypode spp.) as biological indicators on an urban beach. Environ. Monit. Assess. 152, 413–424. https://doi.org/10.1007/s10661-008- 0326-2.
dc.relationManenti, R., Mori, E., Di Canio, V., Mercurio, S., Picone, M., Caffi, M., Brambilla, M., Ficetola, G., Rubolini, D., 2020. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108,728. doi.org/https://doi.org/10.1016/j. biocon.2020.108728.
dc.relationMarion, J., 2019. Impacts to Wildlife: Managing Visitors and Resources to Protect Wildlife. Contributing Paper. Prepared for the Interagency Visitor Use Management Council, March 2019. In: Edition One.
dc.relationMarion, J., Leung, Y., Eagleston, H., Burroughs, K., 2016. A review and synthesis of recreation ecology research findings on visitor impacts to wilderness and protected natural areas. Jour. of Forest. 114 (3), 352–362. https://doi.org/10.5849/jof.15- 498.
dc.relationMarshall, F., Banks, K., Cook, G., 2014. Ecosystem indicators for Southeast Florida beaches. Ecol. Indic. 44, 81–91. https://doi.org/10.1016/j.ecolind.2013.12.021. Martínez, A., Eckert, E.M., Artois, T., Careddu, G., Casu, M., Curini-Galletti, M., Gazale, V., Gobert, S., Ivanenko, V., Jondelius, U., Marzano, M., Pesole, G., Zanello, A., Todaro, M.A., Fontaneto, D., 2020. Human access impacts biodiversity of microscopic animals in sandy beaches. Commun. Biol. 3, 175. https://doi.org/ 10.1038/s42003-020-0912-6.
dc.relationMartins, G.A.L., 2007. A macrofauna bentonicaˆ das praias arenosas expostas do Parque Nacional de Superagüi – PR: Subsídios ao Plano de Manejo. In: Dissertaçao˜ (Mestrado em Ecologia e Conservaçao).˜ Setor de Ciˆencias Biologicas´ da Universidade Federal do Parana.´ Curitiba, Programa de Pos´ Graduaçao˜ em Ecologia e Conservaça˜o.
dc.relationMBON Pole to Pole, 2019. Sampling protocol for assessment of marine diversity on sandy beaches. In: Marine Biodiversity Observation Network Pole to Pole of the Americas. https://doi.org/10.25607/OBP-665 (14 pp.).
dc.relationMcLachlan, A., Defeo, O., Jaramillo, E., Short, A.D., 2013. Sandy beach conservation and recreation: guidelines for optimising management strategies for multi-purpose use. Oc. Coast. Manag. 71, 256–268. https://doi.org/10.1016/j.ocecoaman.2012.10.005.
dc.relationMendoza-Gonzalez, ´ G., Martínez, M., Guevara, R., P´erez-Maqueo, O., Garza-Lagler, M., Howard, A., 2018. Towards a sustainable sun, sea, and sand tourism: the value of ocean view and proximity to the coast. Sustainability 10, 1012. https://doi.org/ 10.3390/su10041012.
dc.relationMilanes, ´ C., Pereira, C., Botero, C., 2019. Improving a decree law about coastal zone management in a small island developing state: the case of Cuba. Marine Policy 101, 93–107. https://doi.org/10.1016/j.marpol.2018.12.030 (March).
dc.relationMilanes, ´ C., Planas, J., Pelot, R., Núnez, ˜ J., 2020. A new methodology incorporating public participation within Cuba’s ICZM program. Oce. Coast. Manag. 186 (105), 101. https://doi.org/10.1016/j.ocecoaman.2020.105101.
dc.relationMoraes, F., Milanes, ´ C., 2020. Os limites espaciais da zona costeira para fins de gestao ˜ a partir de uma perspectiva integrada. Cap. 1 pp. [22–50]. In: Souto, R.D. (org.) Gestao ˜ Ambiental e Sustentabilidade em Areas ´ Costeiras e Marinhas: Conceitos e Praticas. ´ Vol. 1. Rio de Janeiro: Instituto Virtual para o Desenvolvimento Sustentavel ´ - IVI DES.org, 2020. [260 p].
dc.relationNiefer, I.A., 2002. Analise´ do perfil dos visitantes das Ilhas do Superagüi e do Mel: Marketing como instrumento para um turismo sustentavel.´ In: Tese (Doutorado em Engenharia Florestal). Universidade Federal do Parana.´ Curitiba, Setor de Cienciasˆ Agraria´ s.
dc.relationOcana, ˜ F., de Jesús, A., Hernandez, ´ H., 2020. Co-occurring factors affecting ghost crab density at four sandy beaches in the Mexican Caribbean. Reg. Stu. in Mar. Sci. 36 (101), 310. https://doi.org/10.1016/j.rsma.2020.101310.
dc.relationOlds, A.D., Vargas-Fonseca, E., Connolly, R.M., Gilby, B.L., Huijbers, C.M., Hyndes, G.A., Layman, C.A., Whitfield, A.K., Schlacher, T.A., 2018. The ecology of fish in the surf zones of ocean beaches: a global review. Fish and Fisher. 19, 78–89.
dc.relationPeng, C., Zhao, X., Liu, G., 2015. Noise in the sea and its impacts on marine organisms. Int. J. Environ. Res. Public Health, 12, 12,304–12,323; doi:https://doi.org/10.33 90/ijerph121012304.
dc.relationPeterson, C., Bishop, M., 2005. Assessing the environmental impacts of beach nourishment. BioScience 55. In: 887e896.
dc.relationR Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project. org/.
dc.relationReyes-Martínez, M.J., Lercari, D., Ruíz-Delgado, M.C., Sanchez-Moyano, ´ J.E., Jimenez- ´ Rodríguez, A., P´erez-Hurtado, A., García-García, F.J., 2015. Human pressure on sandy beaches: implications for trophic functioning. Estuar. Coasts 38, 1782–1796. https://doi.org/10.1007/s12237-014-9910-6.
dc.relationRickard, C., McLachlan, A., Kerley, G.,1994. The effects of vehicular and pedestrian traffic on dune vegetation in South Africa. Oc. Coast. Manag. 23 (3), 225–247. DOI: doi:https://doi.org/10.1016/0964-5691(94)90021-3.
dc.relationRutz, C., Loretto, M., Bates, A., Davidson, S., Duarte, C., Jetz, W., Johnson, M., Kato, A., Kays, R., Mueller, T., Primack, R., Ropert-Coudert, Y., Tucker, M., Wikelski, M., Cagnacci, F., 2020. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evo. 4, 1156–1159. https://doi.org/10.1038/ s41559-020-1237-z.
dc.relationSchlacher, T., Thomson, L., 2012. Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Biol. Conserv. 147 (1), 123–132. https://doi.org/ 10.1016/j.biocon.2011.12.022.
dc.relationSchlacher, T., Schoeman, D., Lastra, M., Jones, A., Dugan, J., Scapini, F., McLachlan, A., 2006. Neglected ecosystems bear the brunt of change. Ethol. Ecol. Evol. 18, 349e351.
dc.relationSchlacher, T., Nielsen, T., Weston, M., 2013. Human recreation alters behaviour profiles of non-breeding birds on open-coast sandy shores. Estuar. Coast. Shelf Sci. 118, 31–42. https://doi.org/10.1016/j.ecss.2012.12.016.
dc.relationSchlacher, T., Schoeman, D., Jones, A., Dugan, J., Hubbard, D., Defeo, O., Peterson, C., Weston, M., Maslo, B., Olds, A., Scapini, F., Nel, R., Harris, L., Lucrezi, S., Lastra, M., Huijbers, C., Connolly, R., 2014. Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems. Jour. of Env. Manag. 144, 322–335. https://doi. org/10.1016/j.jenvman.2014.05.036.
dc.relationSchlacher, T.A., Jones, A.R., Dugan, J.E., Weston, M.A., Harris, L.L., Schoeman, D.S., Hubbard, D., Scapini, F., Nel, R., Lastra, M., McLachlan, A., Peterson, C.H., 2014a. Open-coast sandy beaches and coastal dunes. Chapter 5. In: Lockwood, J.L., Maslo, B. (Eds.), Coastal Conservation. Cambridge University Press, Cambridge, pp. In: 37e94.
dc.relationSchlacher, T.A., Lucrezi, S., Connolly, R.M., Peterson, C.H., Gilby, B.L., Maslo, B., Olds, A.D., Walker, S.J., Leon, J.X., Huijbers, C.M., Weston, M.A., Turra, A., Hyndes, G.A., Holt, R.A., Schoeman, D.S., 2016. Human threats to sandy beaches: a meta-analysis of ghost crabs illustrates global anthropogenic impacts. Estuar. Coast. and Shelf Sci. 169, 56–73.
dc.relationSouza Filho, J.R., Silva, I.R., Nunes, F.N., 2019. Avaliaçao ˜ qualitativa dos serviços ecossistˆemicos oferecidos pelas praias da APA Lagoa Encantada/Rio Almada, Bahia, Brasil. Caminhos de Geografia Uberlandia ˆ 20 (72), 15–32. https://doi.org/ 10.14393/RCG207241182.
dc.relationSouza, J.L, Silva, I.R., 2015. Avaliaçao ˜ da qualidade ambiental das praias da ilha de Itaparica, Baía de Todos os Santos, Bahia. Soc. & Nat. 27 (3), 469–484. DOI: https://doi.org/10.1590/1982-451,320,150,308.
dc.relationStelling-Wood, T.P., Clark, G.F., Poore, A.G.B., 2016. Responses of ghost crabs to habitat modification of urban sandy beaches. Mar. Env. Res. 116, 32–40. https://doi.org/ 10.1016/j.marenvres.2016.02.009.
dc.relationSteven, R., Castley, J.G., 2013. Tourism as a threat to critically endangered and endangered birds: global patterns and trends in conservation hotspots. Biodivers. Conserv. 22, 1063–1082. https://doi.org/10.1007/s10531-013-0470-z.
dc.relationSuciu, M., Tavares, D., Costa, L., Silva, M., Zalmon, I., 2017. Evaluation of environmental quality of sandy beaches in southeastern Brazil. Mar. Poll. Bull. 199, 133–142. https://doi.org/10.1016/j.marpolbul.2017.04.045.
dc.relationVeloso, V.G., Silva, E.S., Caetano, C.H.S., Cardoso, R.S., 2006. Comparison between the macroinfauna of urbanized and protected beaches in Rio de Janeiro State, Brazil. Biol. Conserv. 127, 510–515.
dc.relationVilar de Araujo, C.C., Melo Rosa, D., Fernandes, J.M., 2008. Densidade e distribuiçao ˜ espacial do caranguejo Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) em trˆes praias arenosas do Espírito Santo, Brasil. Biotemas 21, 73–80. https://doi. org/10.5007/2175-7925.2008v21n4p73.
dc.relationWickham, H., 2014. Tidy data. J. Stat. Softw. 59 (10), 1–23. https://doi.org/10.18637/ jss.v059.i10.
dc.relationWickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., et al., 2019. Welcome to the Tidyverse. Journal of Open Source Software 4 (43), 1686. https:// doi.org/10.21105/joss.01686. Williams, A., Micallef, A., 2009. Beach Management: Principles and Practice. Earthscan Publishers, London.
dc.relationWilson, C., Tisdell, C., 2003. Conservation and economic benefits of wildlife-based marine tourism: sea turtles and whales as case studies. Human Dimensions of Wildlife: An International Journal 8 (1), 49–58. https://doi.org/10.1080/ 10871200390180145.
dc.relationWinter, P.L., Selin, S., Cerveny, L., Bricker, K., 2020. Outdoor recreation, nature-based tourism. and sustainability. Sustainability 12 (1), 81.
dc.relationZambrano-Monserrate, M., Ruano, M., 2019. Does environmental noise affect housing rental prices in developing countries? Evidence from Ecuador. Land Use Policy 87,104,059.
dc.relationZambrano-Monserrate, M., Silva-Zambrano, C., Ruano, M., 2018. The economic value of natural protected areas in Ecuador: a case of Villamil Beach National Recreation Area. Ocean Coast. Manag. 157, 193–202. https://doi.org/10.1016/j. ocecoaman.2018.02.020.
dc.relationZambrano-Monserrate, M., Ruano, M., Sanchez-Alcalde, ´ L., 2020. Indirect effects of COVID-19 on the environment. Sci.Total Env. 728 (138), 813. https://doi.org/ 10.1016/j.scitotenv.2020.138813.
dc.relationZhang, F., Wang, X.A., Nunes, P., Ma, C., 2015. The recreational value of gold coast beaches, Australia: an application of the travel cost method. Eco. Serv. 11, 106–114. https://doi.org/10.1016/j.ecoser.2014.09.001.
dc.relationZielinski, S., Botero, C.M., 2020. Beach tourism in times of COVID-19 pandemic: critical issues, knowledge gaps and research opportunities. Int. J. Environ. Res. Public Health 17, 7288. https://doi.org/10.3390/ijerph17197288.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceBiological Conservation
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0006320721000240#!
dc.subjectTourist beaches
dc.subjectBioindicators
dc.subjectStressors
dc.subjectCoronavirus
dc.subjectCoastal biodiversity
dc.subjectWildlife conservation
dc.titleHow does the beach ecosystem change without tourists during COVID-19 lockdown?
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución