dc.creatorQuispe, Enrique C.
dc.creatorSousa Santos, Vladimir
dc.creatorLópez, Iván Domínguez
dc.creatorGómez, Julio Rafael
dc.creatorViego, Percy R.
dc.date2021-04-14T20:29:23Z
dc.date2021-04-14T20:29:23Z
dc.date2021
dc.date.accessioned2023-10-03T20:01:35Z
dc.date.available2023-10-03T20:01:35Z
dc.identifier2533-2244
dc.identifier1827-6660
dc.identifierhttps://hdl.handle.net/11323/8148
dc.identifierhttps://doi.org/10.15866/iree.v16i1.18881
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173960
dc.descriptionVoltage Unbalance (VU) is one of the most common power quality problems in industrial electrical systems and it is a subject of systematic study. This problem affects the operation and the efficiency of Induction Motors (ims), which are the loads that demand more energy in the industrial sector with around 68%. The Voltage Unbalance Factor (VUF), defined by the international IEC standard, is the main factor used to characterize this problem. This article aims to present a theoretical analysis of VUF focused on its limitations for characterizing the effects of VU on ims. As a result of the analysis, it is shown that the use of the VUF indicator only is insufficient since it does not consider other aspects that affect the operation of the ims such as voltage variation. As an alternative, the use of the Complex Voltage Unbalance Factor and the Equivalent Voltage Magnitude Factor are suggested as parameters that, together with the VUF, allow deepening the characterization of the effects of the UV on the ims.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation1 Zuberi, M.J.S., Tijdink, A., Patel, M.K. Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry (2017) Applied Energy, 205, pp. 85-104. Cited 18 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.07.121
dc.relation2 Sousa Santos, V., Cabello Eras, J.J., Sagastume Gutierrez, A., Cabello Ulloa, M.J. Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring (Open Access) (2019) Measurement: Journal of the International Measurement Confederation, 136, pp. 237-247. Cited 12 times. doi: 10.1016/j.measurement.2018.12.080
dc.relation3 Acar, Ç., Soygenç, O.C., Ergene, L.T. Increasing the efficiency to IE4 class for 5. 5 KW induction motor used in industrial applications (2019) International Review of Electrical Engineering, 14 (1), pp. 67-78. https://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=download&path[]=23095&path[]=pdf_353 doi: 10.15866/iree.v14i1.16307
dc.relation4 Alger, P.L., Arnold, R.E. The History of Induction Motors in America (1976) Proceedings of the IEEE, 64 (9), pp. 1380-1383. Cited 12 times. doi: 10.1109/PROC.1976.10329
dc.relation5 Chapman, Stephen (2012) Electric Machinery Fundamentals. Cited 822 times. (5th ed., McGraw-Hill, New York)
dc.relation6 Sousa, V., Viego, P.R., Gómez, J.R., Quispe, E.C., Balbis, M. Shaft Power Estimation in Induction Motor Operating under Unbalanced and Harmonics Voltages (Open Access) (2016) IEEE Latin America Transactions, 14 (5), art. no. 7530427, pp. 2309-2315. Cited 11 times. http://ezproxy.cuc.edu.co:2063/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2016.7530427
dc.relation7 Sousa, V., Viego, P.R., Gomez, J.R., Quispe, E.C., Balbis, M. Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages (Open Access) (2015) CHILECON 2015 - 2015 IEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies, Proceedings of IEEE Chilecon 2015, art. no. 7400434, pp. 567-572. Cited 10 times. ISBN: 978-146738756-9 doi: 10.1109/Chilecon.2015.7400434
dc.relation8 Siraki, A.G., Pillay, P. An in situ efficiency estimation technique for induction machines working with unbalanced supplies (2012) IEEE Transactions on Energy Conversion, 27 (1), art. no. 6042327, pp. 85-95. Cited 35 times. doi: 10.1109/TEC.2011.2168563
dc.relation9 Ozkilic, M.C., Obdan, A.H. Application of a simplified PLL algorithm for unbalanced three phase systems by using low cost microcontrollers (Open Access) (2018) Tehnicki Vjesnik, 25, pp. 94-98. https://hrcak.srce.hr/file/295381 doi: 10.17559/TV-20170331003443
dc.relation10 Ozgonenel, O., Oke, O., Thomas, D.W.P., Ataseven, M.S. Probabilistic load flow of unbalanced distribution systems with wind farm (Open Access) (2019) Tehnicki Vjesnik, 26 (5), pp. 1260-1266. https://hrcak.srce.hr/file/329349 doi: 10.17559/TV-20180213180751
dc.relation11 Amirullah, Penangsang, O., Soeprijanto, A. High performance of unified power quality conditioner and battery energy storage supplied by photovoltaic using artificial intelligent controller (2018) International Review on Modelling and Simulations, 11 (4), pp. 221-234. Cited 6 times. https://www.praiseworthyprize.org/jsm/index.php?journal=iremos&page=article&op=download&path%5B%5D=22175&path%5B%5D=pdf_279 doi: 10.15866/iremos.v11i4.14742
dc.relation12 Kersting, W.H. Causes and effects of unbalanced voltages serving an induction motor (2001) IEEE Transactions on Industry Applications, 37 (1), pp. 165-170. Cited 43 times. doi: 10.1109/28.903142
dc.relation13 Roger Dugan, H.W.B., McGranaghan, Mark, Santoso, Surya (2012) Electrical Power Systems Quality. Cited 2489 times. (3rd ed., McGraw-Hill)
dc.relation14 von Jouanne, A. (2000) Voltage Unbalance: Power Quality Issues, Related Standards and Mitigation Techniques Effect of Unbalanced Voltage on End Use Equipment Performance. Cited 27 times.
dc.relation15 Aryani, N.K., Syai'in, M., Soeprijanto, A., Made Yulistya Negara, I. Optimal placement and sizing of distributed generation for minimize losses in unbalance radial distribution systems using quantum genetic algorithm (2014) International Review of Electrical Engineering, 9 (1), pp. 157-164. Cited 9 times. http://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=issue&op=view&path%5B%5D=14 doi: 10.15866/iree.v9i1.193
dc.relation16 (2000) Electromagnetic Compatibility (EMC)-Part 4-27: Testing and Measurement Techniques-Unbalance, immunity test. Cited 13 times. IEC, IEC 61000-4-27:2000
dc.relation17 (2016) Motors and Generators. Cited 12 times. NEMA, ANSI/NEMA MG 1-2016
dc.relation18 Aberkane, M., Benouzza, N., Bendiabdellah, A., Boudinar, A.H. Discrimination between supply unbalance and stator short-circuit of an induction motor using neural network (2017) International Review of Automatic Control, 10 (5), pp. 451-460. Cited 8 times. http://www.praiseworthyprize.org/jsm/index.php?journal=ireaco&page=article&op=download&path%5B%5D=20481&path%5B%5D=pdf_185 doi: 10.15866/ireaco.v10i5.11912
dc.relation19 Kabashi, Q., Limani, M., Caka, N., Zabeli, M. Low order harmonic analysis of 3-phase SPWM and SV-PWM inverter systems driving an unbalanced 3-phase induction motor load (2018) International Review on Modelling and Simulations, 11 (3), pp. 134-142. Cited 6 times. http://www.praiseworthyprize.com/iremos.htmhttp://www.praiseworthyprize.org/jsm/index.php?journal=iremos doi: 10.15866/iremos.v11i3.14586
dc.relation20 El-Kharashi, E., Massoud, J.G., Al-Ahmar, M.A. The impact of the unbalance in both the voltage and the frequency on the performance of single and cascaded induction motors (Open Access) (2019) Energy, 181, pp. 561-575. Cited 3 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2019.05.169
dc.relation21 Sousa Santos, V., Cabello Eras, J.J., Sagastume Gutiérrez, A., Cabello Ulloa, M.J. Data to support the assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring. (Open Access) (2020) Data in Brief, 30, art. no. 105512. https://ezproxy.cuc.edu.co:2129/data-in-brief doi: 10.1016/j.dib.2020.105512
dc.relation22 Campbell, M., Arce, G. Effect of Motor Voltage Unbalance on Motor Vibration: Test and Evaluation (2018) IEEE Transactions on Industry Applications, 54 (1), art. no. 8055615, pp. 905-911. Cited 8 times. doi: 10.1109/TIA.2017.2759085
dc.relation23 Gonzalez-Cordoba, J.L., Osornio-Rios, R.A., Granados-Lieberman, D., Romero-Troncoso, R.D.J., Valtierra-Rodriguez, M. Thermal-Impact-Based Protection of Induction Motors under Voltage Unbalance Conditions (2018) IEEE Transactions on Energy Conversion, 33 (4), art. no. 8356117, pp. 1748-1756. Cited 7 times. doi: 10.1109/TEC.2018.2834487
dc.relation24 Kahingala, T.D., Perera, S., Jayatunga, U., Agalgaonkar, A.P., Ciufo, P. Estimation of Voltage Unbalance Attenuation Caused by Three-Phase Induction Motors: An Extension to Distribution System State Estimation (2019) IEEE Transactions on Power Delivery, 34 (5), art. no. 8666084, pp. 1853-1864. Cited 5 times. https://ezproxy.cuc.edu.co:2065/servlet/opac?punumber=61 doi: 10.1109/TPWRD.2019.2904505
dc.relation25 Fernando Mantilla, L. Analysis of the voltage phasors characteristics for motor unbalanced supplies under constant voltage level (2008) Electrical Engineering, 90 (6), pp. 395-406. Cited 3 times. doi: 10.1007/s00202-007-0089-8
dc.relation26 Mantilla, L.F. An analytical and graphical study of the symmetrical components in an induction motor supply in relation to the voltage unbalance parameters (2007) Electrical Engineering, 89 (7), pp. 535-545. Cited 3 times. doi: 10.1007/s00202-006-0038-y
dc.relation27 (2010) Rotating Electrical Machines-Part 1: Rating and Performance. Cited 173 times. IEC, IEC 60034-1:2010
dc.relation28 Quispe, E. (2012) Effects of Voltage Unbalance on the Operation of the Three-Phase Induction Motor. Emphasis on Characterization of Voltage Unbalance and the Effect on Nominal Power Ph.D. dissertation, Universidad del Valle
dc.relation29 Jeong, S.-G. Representing line voltage unbalance (2002) Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 3, pp. 1724-1732. Cited 20 times.
dc.relation30 Kim, J.-G., Lee, E.-W., Lee, D.-J., Lee, J.-H. Comparison of voltage unbalance factor by line and phase voltage (2005) ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, 3, art. no. 1575107, pp. 1998-2001. Cited 32 times. ISBN: 7506274078; 978-750627407-4
dc.relation31 Fortescue, C.L. Polyphase power representation by means of symmetrical coordinates (1920) Transactions of the American Institute of Electrical Engineers, PART II 39, pp. 1481-1484. Cited 8 times. doi: 10.1109/T-AIEE.1920.4765340
dc.relation32 Lee, C.-Y., Lee, W.-J. Effects of nonsinusoidal voltage on the operation performance of a three-phase induction motor (1999) IEEE Transactions on Energy Conversion, 14 (2), pp. 193-200. Cited 47 times. doi: 10.1109/60.766983
dc.relation33 Faiz, J., Ebrahimpour, H., Pillay, P. Influence of unbalanced voltage on the steady-state performance of a three-phase squirrel-cage induction motor (2004) IEEE Transactions on Energy Conversion, 19 (4), pp. 657-662. Cited 104 times. doi: 10.1109/TEC.2004.837283
dc.relation34 Siddique, A., Yadava, G.S., Singh, B. Effects of voltage unbalance on induction motors (2004) Conference Record of IEEE International Symposium on Electrical Insulation, pp. 26-29. Cited 69 times.
dc.relation35 Kini, P.G., Bansal, R.C., Aithal, R.S. A novel approach toward interpretation and application of voltage unbalance factor (2007) IEEE Transactions on Industrial Electronics, 54 (4), pp. 2315-2322. Cited 36 times. doi: 10.1109/TIE.2007.899935
dc.relation36 Anwari, M., Hiendro, A. New unbalance factor for estimating performance of a three-phase induction motor with under-and overvoltage unbalance (2010) IEEE Transactions on Energy Conversion, 25 (3), art. no. 5492182, pp. 619-625. Cited 63 times. doi: 10.1109/TEC.2010.2051548
dc.relation37 Quispe, E.C., López, I.D., Ferreira, F.J.T.E., Sousa, V. Unbalanced voltages impacts on the energy performance of induction motors (Open Access) (2018) International Journal of Electrical and Computer Engineering, 8 (3), pp. 1412-1422. Cited 12 times. iaesjournal.com/online/index.php/IJECE doi: 10.11591/ijece.v8i3.pp1412-1422 http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2017.07.121
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceInternational Review of Electrical Engineering
dc.sourcehttps://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=view&path[]=18881
dc.subjectComplex voltage unbalance factor
dc.subjectEquivalent voltage magnitude factor
dc.subjectInduction motor
dc.subjectUnbalanced voltage
dc.subjectUnbalanced voltage factor
dc.titleTheoretical analysis of the voltage unbalance factor to characterize unbalance problems in induction motors
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución