Elaboración de concretos con altos reemplazos de cenizas volantes y activación con naoh, sulfato de sodio y caliza

dc.creatorSalazar Carreño, Dimelsa
dc.creatorGarcía-Cáceres, Rafael Guillermo
dc.creatorSanta, Alejandra
dc.date2023-02-15T16:48:44Z
dc.date2023-02-15T16:48:44Z
dc.date2022
dc.date.accessioned2023-10-03T20:01:34Z
dc.date.available2023-10-03T20:01:34Z
dc.identifierD. Salazar-Carreño, R. García-Cáceres & A. Santa, “High volume fly ash concrete activated with naoh, sodium sulfate and limestone,” INGE CUC, vol. 18, no. 1, pp. 243–250, 2022. DOI: http://doi.org/10.17981/ingecuc.18.1.2022.17
dc.identifier0122-6517
dc.identifierhttps://hdl.handle.net/11323/9908
dc.identifier10.17981/ingecuc.18.1.2022.17
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173953
dc.descriptionIntroducción— Las grandes cantidades de cenizas volantes que se obtienen como subproducto de la combustión del carbón en las termoeléctricas han generado preocupación por su impacto ambiental, por ejemplo, en Colombia este residuo representa la cantidad de 6 millones de toneladas al año. Dentro de las estrategias de solución está el aprovechamiento de este residuo en procesos industriales. El residuo cuenta con propiedades puzolánicas útiles en industrias como la del cemento y concreto. Objetivos— La presente investigación tiene como objetivo evaluar la resistencia a la compresión a diferentes edades de concretos con reemplazando cemento por ceniza volante de 40%. Metodología— Se utilizó la activación alcalina con NaOH y activación con sulfato de sodio y caliza, en diferentes proporciones. Resultados— Los resultados mostraron que la activación mejora el desempeño de la ceniza. Conclusiones— Se lograron obtener mejores propiedades mecánicas que sin activación.
dc.descriptionIntroduction— The large quantities of fly ash obtained as a by-product of coal combustion in thermoelectric power plants have generated concern about its environmental impact; for example, in Colombia this waste represents 6 million tons per year. One of the solution strategies is the use of this residue in industrial processes. The residue has pozzolanic properties useful in industries such as cement and concrete. Objectives— The objective of this research is to evaluate the compressive strength at different ages of concrete by replacing cement with 40% fly ash. Methodology— Alkaline activation with NaOH and activation with sodium sulfate and limestone, in different proportions, were used. Results— The results showed that activation improved the performance of the ash. Conclusions— Better mechanical properties were obtained than without activation.
dc.format8 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationINGE CUC
dc.relation[1] A. M. Rashad, “A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer,” Int J Sustain Built Environ, vol. 4, no. 2, pp. 278–306, Dec. 2015. https://doi.org/10.1016/j. ijsbe.2015.10.002
dc.relation[1] A. M. Rashad, “A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer,” Int J Sustain Built Environ, vol. 4, no. 2, pp. 278–306, Dec. 2015. https://doi.org/10.1016/j.ijsbe.2015.10.002
dc.relation[2] K. P. Keith, “Characterization of the Behavior of High Volume Fly Ash Concrete,” Thesis Master, Fac. Eng, Auburn, AU, Al, USA, 2011. Availabe: http://hdl.handle.net/10415/2784
dc.relation[3] P. K. Mehta, “Effect of Fly Ash Composition on Sulfate Resistance of Cement,” J Proc, vol. 83, no. 6, pp. 994–1000. Nov. 1986. https://doi.org/10.14359/1892
dc.relation[4] V. M. Malotra & P. K. Metha, High-performance, high-volume fly ash concrete: materials, mixture proportioning, properties, construction practice, and case histories. OT, CA: SCMSD, Inc., 2004. Available: http://worldcat.org/isbn/0965231070
dc.relation[5] J. Z. W. Moon, Z. Wang, M. O. Kim & S.-C. Chun, “Strength enhancement of alkaline activated fly ash cured at ambient temperature by delayed activation of substituted OPC,” Constr Build Mater, vol. 122, pp. 659–666. Sep. 2016. https://doi.org/10.1016/j.conbuildmat.2016.06.111
dc.relation[6] E. R. Nuñez, “Comportamiento Mecánico y durabilidad de morteros de cenizas volantes activadas alcalinamente,” trabajo grado, Dpto Ing, PUJ, BO, CO, 2013. Available: https://repository.javeriana.edu.co/ bitstream/handle/10554/11159/RobayoNunezEstefania2013.pdf
dc.relation[7] M. Criado, A. F. Jiménez & A. Palomo, “Effect of sodium sulfate on the alkali activation of fly ash,” Cem Concr Compos, vol. 32, no. 8, pp. 589–594. Sep. 2010. https://doi.org/10.1016/j.cemconcomp.2010.05.002
dc.relation[8] M. Criado, A. Palomo, A. Fernández-Jiménez & P. F. G. Banfill, “Alkali activated fly ash: Effect of admixtures on paste rheology,” Rheol Acta, vol. 48, no. 4, pp. 447–455. Feb. 2009. https://doi.org/10.1007/ s00397-008-0345-5
dc.relation[9] B. S.-K. Reddy, J. Varaprasad & K. N.-K. Reddy, “Strength and workability of low lime fly-ash based geopolymer concrete,” Indian J Sci Technol, vol. 3, no. 12, pp. 1188–1189, Dec. 2010. Available: https:// sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2010/Issue-12/Article13.pdf
dc.relation[10] M. Criado, “Nuevos materiales cementantes basados en la activación alcalina de cenizas volantes. Carecterización de geles N-A-S-H en función del contenido de sílice soluble. Efecto del Na2 SO4,” Ph.D. dissertation, Depto Quim Inorg, CSIC, IETcc, MAD, ES, 2007. Disponible en http://hdl.handle. net/10486/1697
dc.relation[11] D. Salazar-Carreño, R. G. García-Cáceres & O. O. Ortiz-Rodríguez, “Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material,” Constr Build Mater, vol. 96, no. 15, pp. 65–75. Oct. 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.178
dc.relation[12] A. Bicer, “Effect of fly ash particle size on thermal and mechanical properties of fly ash-cement composites,” TSEP, vol. 8, pp. 78–82, Dec. 2018. https://doi.org/10.1016/j.tsep.2018.07.014
dc.relation[13] S. H. Jung, V. Saraswathy, S. Karthick, P. Kathirvel & S. J. Kwon, “Microstructure Characteristics of Fly Ash Concrete with Rice Husk Ash and Lime Stone Powder,” Int J Concr Struct Mater, vol. 12, no. 17, 1–9, Dec. 2018. https://doi.org/10.1186/s40069-018-0257-4
dc.relation[14] A. Palomo, M. W. Grutzeck & M. T. Blanco, “Alkali-activated fly ashes: A cement for the future,” Cem Concr Res, vol. 29, no. 8, pp. 1323–1329, Aug. 1999. https://doi.org/10.1016/S0008-8846(98)00243-9
dc.relation[15] G. Kovalchuk, A. Fernández-Jiménez & A. Palomo, “Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry,” Mater Const, vol. 58, no. 291, pp. 35–52, Sep. 2008. https://doi.org/10.3989/mc.2008.v58.i291.101
dc.relation[16] M. Criado, A. Palomo & A. Fernández-Jiménez, “Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products,” Fuel, vol. 84, no. 16, pp. 2048–2054, Nov. 2005. https://doi.org/10.1016/j.fuel.2005.03.030
dc.relation[17] S. P. Singh, S. Chowdhury & P. N. Mishra, “An Experimental Investigation on Strength Characteristics of Alkali Activated Fly Ash,” Procedia Earth Planet Sci, vol. 11, pp. 402–409, 2015. https://doi. org/10.1016/j.proeps.2015.06.039
dc.relation[18] D. Velandia-Manchego, C. Lynsdale, F. Ramirez, J. Provis, G. Hermida & A. Gómez, “Ultra optimum green concrete using high volume fly ash activated systems,” MRS OPL Arch, vol. 1612, no. 2, pp. 1689–1699, Dec. 2014. https://doi.org/10.1557/opl.2013.1118
dc.relation[19] T. Degen, M. Sadki, E. Bron, U. König & G. Nénert, “The HighScore suite,” Powder Diffraction. vol. 29, Suppl S2, pp S13–S18, Dec. 2014. https://doi.org/10.1017/S0885715614000840
dc.relation[20] Axios FAST Simultaneous XRF Spectrometer. (model 4 kw), Malvern Panalytical, Malvern, Reino Unido. Disponible en https://www.malvernpanalytical.com/es
dc.relation250
dc.relation243
dc.relation1
dc.relation18
dc.rightsDerechos de autor 2021 INGE CUC
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3415
dc.subjectConcreto
dc.subjectCenizas volantes
dc.subjectActivación
dc.subjectNaOH
dc.subjectSilicato de sodio
dc.subjectCaliza
dc.subjectConcrete
dc.subjectFly ash
dc.subjectActivation
dc.subjectSodium sulfate
dc.subjectLimestone
dc.titleHigh volume fly ash concrete activated with naoh, sodium sulfate and limestone
dc.titleElaboración de concretos con altos reemplazos de cenizas volantes y activación con naoh, sulfato de sodio y caliza
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución