dc.creatorAcuna-Bedoya, Jawer David
dc.creatorAlvarez Pugliese, Christian Eduardo
dc.creatorCastilla-Acevedo, Samir
dc.creatorBravo Suarez, Juan
dc.creatorMarriaga-Cabrales, Nilson
dc.date2022-07-21T19:59:21Z
dc.date2022-07-21T19:59:21Z
dc.date2022
dc.date.accessioned2023-10-03T20:01:29Z
dc.date.available2023-10-03T20:01:29Z
dc.identifierJawer David Acuña-Bedoya, Christian E. Alvarez-Pugliese, Samir Fernando Castilla-Acevedo, Juan J. Bravo-Suárez, Nilson Marriaga-Cabrales, Degradation of diclofenac aqueous solutions in a 3D electrolytic reactor using carbon-based materials as pseudo third electrodes in fluidized bed, anodic and cathodic configurations, Journal of Environmental Chemical Engineering, Volume 10, Issue 4, 2022, 108075, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.108075. (https://www.sciencedirect.com/science/article/pii/S2213343722009484)
dc.identifier2213-3437
dc.identifierhttps://hdl.handle.net/11323/9392
dc.identifierhttps://doi.org/10.1016/j.jece.2022.108075
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173941
dc.descriptionIn this study, the degradation of diclofenac (DCF) in a 3D electrochemical reactor was evaluated. Several parameters were studied including the reactor configuration: fluidized bed (FB), anodic packed bed (APB) and cathodic packed bed (CPB); and the type of pseudo third electrode material: granular activated carbon (GAC) and granular expanded graphite (GEG). The configuration that showed the highest total organic carbon (TOC) removal was the APB, with values up to 85%. In addition, when the substrate saturation of the pseudo third electrode was 20% in the APB, the energy consumption was 2.5 times lower than the conventional 2D reactor. This efficient conversion was the result of improved contacting and reaction between hydroxyl (HO•) and sulfate (SO4•-) radicals electro-generated on the anode surface and DCF adsorbed on the particulate carbon. While the degradation efficiency with the 3D CPB reactor was higher than the FB configuration, it was less effective than the 3D APB reactor because of H2O2 production in the cathode, which decomposed to generate HO•, but only slowly and not sufficiently to oxidize DCF to a significant extent. Furthermore, it was also found that when two 3D APB reactors were connected in series a more significant TOC decrease (98%) and lower energy consumption (4 times) could be achieved than in a single 2D reactor configuration. This result demonstrated that the 3D electrochemical process can be cheaper and faster. All these results highlight the 3D anodic electro-oxidation process as a potential technology to efficiently treat recalcitrant contaminants of emerging concern.
dc.format12
dc.formatapplication/pdf
dc.formattext/html
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier Ltd.
dc.publisherColombia
dc.relationJournal of Environmental Chemical Engineering
dc.relationY. Zhang, S.U. Geißen, C. Gal Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies Chemosphere, 73 (2008), pp. 1151-1161, 10.1016/j.chemosphere.2008.07.086
dc.relationT. Di Lorenzo, M. Cifoni, M. Baratti, G. Pieraccini, W.D. Di Marzio, D.M.P. Galassi Four scenarios of environmental risk of diclofenac in European groundwater ecosystems Environ. Pollut., 287 (2021), Article 117315, 10.1016/j.envpol.2021.117315
dc.relationS. González-Alonso, L.M. Merino, S. Esteban, M. López de Alda, D. Barceló, J.J. Durán, J. López-Martínez, J. Aceña, S. Pérez, N. Mastroianni, A. Silva, M. Catalá, Y. Valcárcel Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region Environ. Pollut., 229 (2017), pp. 241-254, 10.1016/j.envpol.2017.05.060
dc.relationB.P. Gumbi, B. Moodley, G. Birungi, P.G. Ndungu Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry Chemosphere, 168 (2017), pp. 1042-1050, 10.1016/j.chemosphere.2016.10.105
dc.relationM. Rabiet, A. Togola, F. Brissaud, J.L. Seidel, H. Budzinski, F. Elbaz-Poulichet Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment Environ. Sci. Technol., 40 (2006), pp. 5282-5288, 10.1021/es060528p
dc.relationF. Sacher, F.T. Lange, H.J. Brauch, I. Blankenhorn Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany J. Chromatogr. A., 938 (2001), pp. 199-210, 10.1016/S0021-9673(01)01266-3
dc.relationJ. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr, R.D. Negele Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout Aquat. Toxicol., 68 (2004), pp. 141-150, 10.1016/j.aquatox.2004.03.014
dc.relationC. Jung, A. Son, N. Her, K.D. Zoh, J. Cho, Y. Yoon Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review J. Ind. Eng. Chem., 27 (2015), pp. 1-11, 10.1016/j.jiec.2014.12.035
dc.relationE. Brillas, C.A. Martínez-huitle Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B, Environ., 166–167 (2015), pp. 603-643, 10.1016/j.apcatb.2014.11.016
dc.relationD. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, L. Yang Critical review of advanced oxidation processes in organic wastewater treatment Chemosphere, 275 (2021), Article 130104, 10.1016/j.chemosphere.2021.130104
dc.relationV. Satizabal-Gomez, M.A. Collazos-Botero, E.A. Serna-Galvis, R.A. Torres-Palma, J.J. Bravo-Suarez, S.F. Castilla-Acevedo Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater Miner. Eng., 170 (2021), 10.1016/j.mineng.2021.107031
dc.relationS.A. Joven-Quintero, S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, R. Acosta-Herazo, F. Machuca-Martinez Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO<inf>2</inf> supported on borosilicate sheets: a new perspective for mining wastewater treatment Mater. Sci. Semicond. Process., 110 (2020), 10.1016/j.mssp.2020.104972
dc.relationH. Ibargüen-López, B. López-Balanta, L. Betancourt-Buitrago, E.A. Serna-Galvis, R.A. Torres-Palma, F. Machuca-Martínez, S.F. Castilla-Acevedo Degradation of hexacyanoferrate (III) ion by the coupling of the ultraviolet light and the activation of persulfate at basic pH J. Environ. Chem. Eng., 9 (2021), Article 106233, 10.1016/j.jece.2021.106233
dc.relationSamir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes J. Hazard. Mater., 392 (2020), 10.1016/j.jhazmat.2020.122389
dc.relationF.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters , Appl. Catal. B Environ., 202 (2017), pp. 217-261, 10.1016/j.apcatb.2016.08.037
dc.relationT.A. Enache, A.M. Chiorcea-Paquim, O. Fatibello-Filho, A.M. Oliveira-Brett Hydroxyl radicals electrochemically generated in situ on a boron-doped diamond electrode Electrochem. Commun., 11 (2009), pp. 1342-1345, 10.1016/j.elecom.2009.04.017
dc.relationA. Fernandes, M.J. Nunes, A.S. Rodrigues, M.J. Pacheco, L. Ciríaco, A. Lopes Electro-persulfate processes for the treatment of complex wastewater matrices: Present and future Molecules, 26 (2021), 10.3390/molecules26164821
dc.relationL. Wei, S. Guo, G. Yan, C. Chen, X. Jiang Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor Electrochim. Acta, 55 (2010), pp. 8615-8620, 10.1016/j.electacta.2010.08.011
dc.relationJ. Zhan, Z. Li, G. Yu, X. Pan, J. Wang, W. Zhu, X. Han, Y. Wang Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes Sep. Purif. Technol., 208 (2019), pp. 12-18, 10.1016/j.seppur.2018.06.030
dc.relationM. Zhou, L. Lei The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor Chemosphere, 65 (2006), pp. 1197-1203, 10.1016/j.chemosphere.2006.03.054
dc.relationS. Cho, C. Kim, I. Hwang Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER) Chemosphere, 259 (2020), Article 127382, 10.1016/j.chemosphere.2020.127382
dc.relationX. Wu, X. Yang, D. Wu, R. Fu Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor Chem. Eng. J., 138 (2008), pp. 47-54, 10.1016/j.cej.2007.05.027
dc.relationA. Rahmani, M. Leili, A. Seid-mohammadi, A. Shabanloo, A. Ansari, D. Nematollahi, S. Alizadeh Improved degradation of diuron herbicide and pesticide wastewater treatment in a three-dimensional electrochemical reactor equipped with PbO2 anodes and granular activated carbon particle electrodes J. Clean. Prod., 322 (2021), Article 129094, 10.1016/j.jclepro.2021.129094
dc.relationR.V. McQuillan, G.W. Stevens, K.A. Mumford The electrochemical regeneration of granular activated carbons: a review J. Hazard. Mater., 355 (2018), pp. 34-49, 10.1016/j.jhazmat.2018.04.079
dc.relationH. Pourzamani, N. Mengelizadeh, Y. Hajizadeh, H. Mohammadi Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes Environ. Sci. Pollut. Res., 25 (2018), pp. 24746-24763, 10.1007/s11356-018-2527-8
dc.relationO. Garcia-Rodriguez, E. Mousset, H. Olvera-Vargas, O. Lefebvre Electrochemical treatment of highly concentrated wastewater: a review of experimental and modeling approaches from lab- to full-scale Crit. Rev. Environ. Sci. Technol., 52 (2022), pp. 240-309, 10.1080/10643389.2020.1820428
dc.relationB.P. Chaplin Critical review of electrochemical advanced oxidation processes for water treatment applications Environ. Sci. Process. Impacts, 16 (2014), pp. 1182-1203, 10.1039/c3em00679d
dc.relationF.L. Guzmán-Duque, R.E. Palma-Goyes, I. González, G. Peñuela, R.A. Torres-Palma Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water J. Hazard. Mater., 278 (2014), pp. 221-226, 10.1016/j.jhazmat.2014.05.076
dc.relationC.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes Diam. Relat. Mater., 93 (2019), pp. 193-199, 10.1016/j.diamond.2019.02.018
dc.relationN.L. Pedersen, M. Nikbakht Fini, P.K. Molnar, J. Muff Synergy of combined adsorption and electrochemical degradation of aqueous organics by granular activated carbon particulate electrodes Sep. Purif. Technol., 208 (2019), pp. 51-58, 10.1016/j.seppur.2018.05.023
dc.relationM.R. Samarghandi, A. Ansari, A. Dargahi, A. Shabanloo, D. Nematollahi, M. Khazaei, H.Z. Nasab, Y. Vaziri Enhanced electrocatalytic degradation of bisphenol A by graphite/β-PbO2 anode in a three-dimensional electrochemical reactor J. Environ. Chem. Eng., 9 (2021), Article 106072, 10.1016/j.jece.2021.106072
dc.relationD. Liu Water treatment by adsorption and electrochemical regeneration development of a liquid-lift reactor The University of Manchester (2015)
dc.relationJ. Acuña-Bedoya, J.A. Comas-Cabrales, C.E. Alvarez-Pugliese, N. Marriaga-Cabrales Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue J. Environ. Chem. Eng., 8 (2020), Article 104074, 10.1016/j.jece.2020.104074
dc.relationO. Garcia-Rodriguez, A. Villot, H. Olvera-Vargas, C. Gerente, Y. Andres, O. Lefebvre Impact of the saturation level on the electrochemical regeneration of activated carbon in a single sequential reactor Carbon N. Y, 163 (2020), pp. 265-275, 10.1016/j.carbon.2020.02.041
dc.relationH.K. Jeswani, H. Gujba, N.W. Brown, E.P.L. Roberts, A. Azapagic Removal of organic compounds from water: Life cycle environmental impacts and economic costs of the Arvia process compared to granulated activated carbon J. Clean. Prod., 89 (2015), pp. 203-213, 10.1016/j.jclepro.2014.11.017
dc.relationN.W. Brown, E.P.L. Roberts Combining adsorption with anodic oxidation as an innovative technique for removal and destruction of organics Water Sci. Technol., 68 (2013), pp. 1216-1222, 10.2166/wst.2013.297
dc.relationM.D. Vedenyapina, D.A. Borisova, A.P. Simakova, L.P. Proshina, A.A. Vedenyapin Adsorption of diclofenac sodium from aqueous solutions on expanded graphite Solid Fuel Chem., 47 (2013), pp. 59-63, 10.3103/S0361521912060134
dc.relationD.M. Nevskaia, A.B. Fuertes, G. Marban Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths Carbon N. Y, 41 (2003), pp. 87-96, 10.1016/S0008-6223(02)00274-9
dc.relationY. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang Expanded graphite as superior anode for sodium-ion batteries Nat. Commun., 5 (2014), pp. 1-10, 10.1038/ncomms5033
dc.relationW. Zheng, S.C. Wong Electrical conductivity and dielectric properties of PMMA/expanded graphite composites Compos. Sci. Technol., 63 (2003), pp. 225-235, 10.1016/S0266-3538(02)00201-4
dc.relationC.B. Beck Physicochemical processes for water quality control Wiley Interscience, John Wiley & Sons, New York (1973), 10.1002/aic.690190245
dc.relationJ.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman Figures of merit for the technical development and application of advanced oxidation technologies for both electric and solar driven systems (IUPAC Technical Report) Pure Appl. Chem., 73 (2001), pp. 627-637, 10.1351/pac200173040627
dc.relationB.H. Hameed, A.T.M. Din, A.L. Ahmad Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies J. Hazard. Mater., 141 (2007), pp. 819-825, 10.1016/j.jhazmat.2006.07.049
dc.relationJ. Lach, A. Szymonik Adsorption of diclofenac sodium from aqueous solutions on commercial activated carbons Desalin. Water Treat., 186 (2020), pp. 418-429, 10.5004/dwt.2020.25567
dc.relationN. González-Ipia, K.C. Bolaños-Chamorro, J.D. Acuña-Bedoya, F. Machuca-Martínez, S.F. Castilla-Acevedo Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment J. Environ. Chem. Eng., 8 (2020), Article 104336, 10.1016/j.jece.2020.104336
dc.relationC.J. Sun, L.Z. Sun, X.X. Sun Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant Ind. Eng. Chem. Res., 52 (2013), pp. 14251-14260, 10.1021/ie401571p
dc.relationJ.L. Sotelo, A.R. Rodríguez, M.M. Mateos, S.D. Hernández, S.A. Torrellas, J.G. Rodríguez Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, 47 (2012), pp. 640-652, 10.1080/03601234.2012.668462
dc.relationC. Saucier, M.A. Adebayo, E.C. Lima, R. Catalu, P.S. Thue, L.D.T. Prola, F.M. Machado, F.A. Pavan, G.L. Dotto Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents 289 (2015), pp. 18-27, 10.1016/j.jhazmat.2015.02.026
dc.relationS. Larous, A. Meniai Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones Int. J. Hydrog. Energy, 41 (2016), pp. 10380-10390, 10.1016/j.ijhydene.2016.01.096
dc.relationI. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater Sep. Purif. Technol., 175 (2017), pp. 1-8, 10.1016/j.seppur.2016.11.020
dc.relationH. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C.A. Zaror Effect of ozone treatment on surface properties of activated carbon Langmuir, 18 (2002), pp. 2111-2116, 10.1021/la010920a
dc.relationN. Yuan, A. Zhao, Z. Hu, K. Tan, J. Zhang Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review Chemosphere, 287 (2022), Article 132227, 10.1016/j.chemosphere.2021.132227
dc.relationH. Valdes, M. Sanchez-Polo, C.A. Zaror Effect of ozonation on the activated carbon surface chemical properties and on 2-mercaptobenzothiazole adsorption Lat. Am. Appl. Res., 33 (2003), pp. 219-223
dc.relationB. Wang, W. Kong, H. Ma Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode J. Hazard. Mater., 146 (2007), pp. 295-301, 10.1016/j.jhazmat.2006.12.031
dc.relationA. El-Ghenymy, C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodríguez, E. Brillas Electrochemical incineration of sulfanilic acid at a boron-doped diamond anode Chemosphere, 87 (2012), pp. 1126-1133, 10.1016/j.chemosphere.2012.02.006
dc.relationG.W. Reade, A.H. Nahle, P. Bond, J.M. Friedrich, F.C. Walsh Removal of cupric ions from acidic sulfate solution using reticulated vitreous carbon rotating cylinder electrodes J. Chem. Technol. Biotechnol., 79 (2004), pp. 935-945, 10.1002/jctb.1076
dc.relationK.Y. Foo, B.H. Hameed A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects J. Hazard. Mater., 170 (2009), pp. 552-559, 10.1016/j.jhazmat.2009.05.057
dc.relationA. Fortuny, J. Font, A. Fabregat Wet air oxidation of phenol using active carbon as catalyst Appl. Catal. B, Environ., 19 (1998), 10.1016/S0926-3373(98)00072-1
dc.relationS. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia Heterogeneous Fenton catalysts based on activated carbon and related materials ChemSusChem, 4 (2011), pp. 1712-1730, 10.1002/cssc.201100216
dc.relationR.V. McQuillan, G.W. Stevens, K.A. Mumford The electrochemical regeneration of granular activated carbons: a review J. Hazard. Mater., 355 (2018), pp. 34-49, 10.1016/j.jhazmat.2018.04.079
dc.relationW. Zhou, X. Meng, J. Gao, H. Zhao, G. Zhao, J. Ma Electrochemical regeneration of carbon-based adsorbents: a review of regeneration mechanisms, reactors, and future prospects Chem. Eng. J. Adv., 5 (2021), Article 100083, 10.1016/j.ceja.2020.100083
dc.relationW. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh “Self-cleaning” electrochemical regeneration of dye-loaded activated carbon Electrochem. Commun., 100 (2019), pp. 85-89, 10.1016/j.elecom.2019.01.025
dc.relationC.A. Martínez-Huitle, E. Brillas Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review Appl. Catal. B Environ., 87 (2009), pp. 105-145, 10.1016/j.apcatb.2008.09.017
dc.relationR. Xie, X. Meng, P. Sun, J. Niu, W. Jiang Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact Appl. Catal. B, Environ., 203 (2017), pp. 515-525, 10.1016/j.apcatb.2016.10.057
dc.relationY. Wang, L. Zhu, N. Ba, F. Gao, H. Xie Effects of NH4F quantity on N-doping level, photodegradation and photocatalytic H2 production activities of N-doped TiO2 nanotube array films Mater. Res. Bull., 86 (2017), pp. 268-276, 10.1016/j.materresbull.2016.10.031
dc.relationK. Yapsaklı, F. Çeçen, Ö. Aktaş, Z.S. Can Impact of surface properties of granular activated carbon and preozonation on adsorption and desorption of natural organic matter Environ. Eng. Sci., 26 (2009), pp. 489-500, 10.1089/ees.2008.0005
dc.relationM. Zhou, L. Lei The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor Chemosphere, 65 (2006), pp. 1197-1203, 10.1016/j.chemosphere.2006.03.054
dc.relationC. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March 12, 2014).
dc.relationE. Brillas, S. Garcia-Segura, M. Skoumal, C. Arias Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes Chemosphere, 79 (2010), pp. 605-612, 10.1016/j.chemosphere.2010.03.004
dc.relationD.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review Water Res, 139 (2018), pp. 118-131, 10.1016/j.watres.2018.03.042
dc.relationN. Nippatlapalli, K. Ramakrishnan, L. Philip Enhanced degradation of complex organic compounds in wastewater using different novel continuous flow non – Thermal pulsed corona plasma discharge reactors Environ. Res., 203 (2022), Article 111807, 10.1016/j.envres.2021.111807
dc.relationM. of Environment and climate change, Guidance Document for Integrating UV ‐ based Advanced Oxidation Processes ( AOPs) Into Municipal Wastewater Treatment Plants Showcasing Water Innov. Progr., 28 (2015) 〈http://civil.engineering.utoronto.ca/wp-content/uploads/2015/09/SWI_Guidance_Document_-_Final.pdf〉 accessed March 2, 2022
dc.relationP. Sathishkumar, R. Viswanathan Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants Renew. Sustain. Energy Rev., 55 (2016), pp. 426-454, 10.1016/j.rser.2015.10.139
dc.relationG. Coria, J.L. Nava, G. Carreño Electrooxidation of diclofenac in synthetic pharmaceutical wastewater using an electrochemical reactor equipped with a boron doped diamond electrode J. Mex. Chem. Soc., 58 (2014), pp. 303-308
dc.relationA. Yasmin, J.J. Luo, I.M. Daniel Processing of expanded graphite reinforced polymer nanocomposites Compos. Sci. Technol., 66 (2006), pp. 1182-1189, 10.1016/j.compscitech.2005.10.014
dc.relationH. Valdés, C.A. Zaror Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach Chemosphere, 65 (2006), pp. 1131-1136, 10.1016/j.chemosphere.2006.04.027
dc.relationZ. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan ZnSn(OH)6 Photocatalyst for Methylene Blue Degradation: Electrolyte-Dependent Morphology and Performance ChemistrySelect (2018), pp. 10849-10856, 10.1002/slct.201802195
dc.relationN. Gedam, N.R. Neti Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: Treatment of recalcitrant chemical industry wastewater J. Environ. Chem. Eng., 2 (2014), pp. 1527-1532, 10.1016/j.jece.2014.06.025
dc.relation12
dc.relation1
dc.relation4
dc.relation10
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights© 2022 Elsevier Ltd. All rights reserved.
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2213343722009484
dc.subject540 - Química y ciencias afines::546 - Química inorgánica
dc.subjectBoron doped diamond
dc.subjectElectro-oxidation
dc.subjectAdsorption
dc.subjectGranular activated carbon
dc.subjectGranular expanded graphite
dc.titleDegradation of diclofenac aqueous solutions in a 3D electrolytic reactor using carbon-based materials as pseudo third electrodes in fluidized bed, anodic and cathodic configurations
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución