dc.creator | Acuna-Bedoya, Jawer David | |
dc.creator | Alvarez Pugliese, Christian Eduardo | |
dc.creator | Castilla-Acevedo, Samir | |
dc.creator | Bravo Suarez, Juan | |
dc.creator | Marriaga-Cabrales, Nilson | |
dc.date | 2022-07-21T19:59:21Z | |
dc.date | 2022-07-21T19:59:21Z | |
dc.date | 2022 | |
dc.date.accessioned | 2023-10-03T20:01:29Z | |
dc.date.available | 2023-10-03T20:01:29Z | |
dc.identifier | Jawer David Acuña-Bedoya, Christian E. Alvarez-Pugliese, Samir Fernando Castilla-Acevedo, Juan J. Bravo-Suárez, Nilson Marriaga-Cabrales,
Degradation of diclofenac aqueous solutions in a 3D electrolytic reactor using carbon-based materials as pseudo third electrodes in fluidized bed, anodic and cathodic configurations,
Journal of Environmental Chemical Engineering,
Volume 10, Issue 4,
2022,
108075,
ISSN 2213-3437,
https://doi.org/10.1016/j.jece.2022.108075.
(https://www.sciencedirect.com/science/article/pii/S2213343722009484) | |
dc.identifier | 2213-3437 | |
dc.identifier | https://hdl.handle.net/11323/9392 | |
dc.identifier | https://doi.org/10.1016/j.jece.2022.108075 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173941 | |
dc.description | In this study, the degradation of diclofenac (DCF) in a 3D electrochemical reactor was evaluated. Several parameters were studied including the reactor configuration: fluidized bed (FB), anodic packed bed (APB) and cathodic packed bed (CPB); and the type of pseudo third electrode material: granular activated carbon (GAC) and granular expanded graphite (GEG). The configuration that showed the highest total organic carbon (TOC) removal was the APB, with values up to 85%. In addition, when the substrate saturation of the pseudo third electrode was 20% in the APB, the energy consumption was 2.5 times lower than the conventional 2D reactor. This efficient conversion was the result of improved contacting and reaction between hydroxyl (HO•) and sulfate (SO4•-) radicals electro-generated on the anode surface and DCF adsorbed on the particulate carbon. While the degradation efficiency with the 3D CPB reactor was higher than the FB configuration, it was less effective than the 3D APB reactor because of H2O2 production in the cathode, which decomposed to generate HO•, but only slowly and not sufficiently to oxidize DCF to a significant extent. Furthermore, it was also found that when two 3D APB reactors were connected in series a more significant TOC decrease (98%) and lower energy consumption (4 times) could be achieved than in a single 2D reactor configuration. This result demonstrated that the 3D electrochemical process can be cheaper and faster. All these results highlight the 3D anodic electro-oxidation process as a potential technology to efficiently treat recalcitrant contaminants of emerging concern. | |
dc.format | 12 | |
dc.format | application/pdf | |
dc.format | text/html | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier Ltd. | |
dc.publisher | Colombia | |
dc.relation | Journal of Environmental Chemical Engineering | |
dc.relation | Y. Zhang, S.U. Geißen, C. Gal
Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies
Chemosphere, 73 (2008), pp. 1151-1161, 10.1016/j.chemosphere.2008.07.086 | |
dc.relation | T. Di Lorenzo, M. Cifoni, M. Baratti, G. Pieraccini, W.D. Di Marzio, D.M.P. Galassi
Four scenarios of environmental risk of diclofenac in European groundwater ecosystems
Environ. Pollut., 287 (2021), Article 117315, 10.1016/j.envpol.2021.117315 | |
dc.relation | S. González-Alonso, L.M. Merino, S. Esteban, M. López de Alda, D. Barceló, J.J. Durán, J. López-Martínez, J. Aceña, S. Pérez, N. Mastroianni, A. Silva, M. Catalá, Y. Valcárcel
Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region
Environ. Pollut., 229 (2017), pp. 241-254, 10.1016/j.envpol.2017.05.060 | |
dc.relation | B.P. Gumbi, B. Moodley, G. Birungi, P.G. Ndungu
Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry
Chemosphere, 168 (2017), pp. 1042-1050, 10.1016/j.chemosphere.2016.10.105 | |
dc.relation | M. Rabiet, A. Togola, F. Brissaud, J.L. Seidel, H. Budzinski, F. Elbaz-Poulichet
Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment
Environ. Sci. Technol., 40 (2006), pp. 5282-5288, 10.1021/es060528p | |
dc.relation | F. Sacher, F.T. Lange, H.J. Brauch, I. Blankenhorn
Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany
J. Chromatogr. A., 938 (2001), pp. 199-210, 10.1016/S0021-9673(01)01266-3 | |
dc.relation | J. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr, R.D. Negele
Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout
Aquat. Toxicol., 68 (2004), pp. 141-150, 10.1016/j.aquatox.2004.03.014 | |
dc.relation | C. Jung, A. Son, N. Her, K.D. Zoh, J. Cho, Y. Yoon
Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review
J. Ind. Eng. Chem., 27 (2015), pp. 1-11, 10.1016/j.jiec.2014.12.035 | |
dc.relation | E. Brillas, C.A. Martínez-huitle
Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review,
Appl. Catal. B, Environ., 166–167 (2015), pp. 603-643, 10.1016/j.apcatb.2014.11.016 | |
dc.relation | D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, L. Yang
Critical review of advanced oxidation processes in organic wastewater treatment
Chemosphere, 275 (2021), Article 130104, 10.1016/j.chemosphere.2021.130104 | |
dc.relation | V. Satizabal-Gomez, M.A. Collazos-Botero, E.A. Serna-Galvis, R.A. Torres-Palma, J.J. Bravo-Suarez, S.F. Castilla-Acevedo
Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
Miner. Eng., 170 (2021), 10.1016/j.mineng.2021.107031 | |
dc.relation | S.A. Joven-Quintero, S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, R. Acosta-Herazo, F. Machuca-Martinez
Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO<inf>2</inf> supported on borosilicate sheets: a new perspective for mining wastewater treatment
Mater. Sci. Semicond. Process., 110 (2020), 10.1016/j.mssp.2020.104972 | |
dc.relation | H. Ibargüen-López, B. López-Balanta, L. Betancourt-Buitrago, E.A. Serna-Galvis, R.A. Torres-Palma, F. Machuca-Martínez, S.F. Castilla-Acevedo
Degradation of hexacyanoferrate (III) ion by the coupling of the ultraviolet light and the activation of persulfate at basic pH
J. Environ. Chem. Eng., 9 (2021), Article 106233, 10.1016/j.jece.2021.106233 | |
dc.relation | Samir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez
Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes
J. Hazard. Mater., 392 (2020), 10.1016/j.jhazmat.2020.122389 | |
dc.relation | F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar
Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters
, Appl. Catal. B Environ., 202 (2017), pp. 217-261, 10.1016/j.apcatb.2016.08.037 | |
dc.relation | T.A. Enache, A.M. Chiorcea-Paquim, O. Fatibello-Filho, A.M. Oliveira-Brett
Hydroxyl radicals electrochemically generated in situ on a boron-doped diamond electrode
Electrochem. Commun., 11 (2009), pp. 1342-1345, 10.1016/j.elecom.2009.04.017 | |
dc.relation | A. Fernandes, M.J. Nunes, A.S. Rodrigues, M.J. Pacheco, L. Ciríaco, A. Lopes
Electro-persulfate processes for the treatment of complex wastewater matrices: Present and future
Molecules, 26 (2021), 10.3390/molecules26164821 | |
dc.relation | L. Wei, S. Guo, G. Yan, C. Chen, X. Jiang
Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor
Electrochim. Acta, 55 (2010), pp. 8615-8620, 10.1016/j.electacta.2010.08.011 | |
dc.relation | J. Zhan, Z. Li, G. Yu, X. Pan, J. Wang, W. Zhu, X. Han, Y. Wang
Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes
Sep. Purif. Technol., 208 (2019), pp. 12-18, 10.1016/j.seppur.2018.06.030 | |
dc.relation | M. Zhou, L. Lei
The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor
Chemosphere, 65 (2006), pp. 1197-1203, 10.1016/j.chemosphere.2006.03.054 | |
dc.relation | S. Cho, C. Kim, I. Hwang
Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER)
Chemosphere, 259 (2020), Article 127382, 10.1016/j.chemosphere.2020.127382 | |
dc.relation | X. Wu, X. Yang, D. Wu, R. Fu
Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor
Chem. Eng. J., 138 (2008), pp. 47-54, 10.1016/j.cej.2007.05.027 | |
dc.relation | A. Rahmani, M. Leili, A. Seid-mohammadi, A. Shabanloo, A. Ansari, D. Nematollahi, S. Alizadeh
Improved degradation of diuron herbicide and pesticide wastewater treatment in a three-dimensional electrochemical reactor equipped with PbO2 anodes and granular activated carbon particle electrodes
J. Clean. Prod., 322 (2021), Article 129094, 10.1016/j.jclepro.2021.129094 | |
dc.relation | R.V. McQuillan, G.W. Stevens, K.A. Mumford
The electrochemical regeneration of granular activated carbons: a review
J. Hazard. Mater., 355 (2018), pp. 34-49, 10.1016/j.jhazmat.2018.04.079 | |
dc.relation | H. Pourzamani, N. Mengelizadeh, Y. Hajizadeh, H. Mohammadi
Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes
Environ. Sci. Pollut. Res., 25 (2018), pp. 24746-24763, 10.1007/s11356-018-2527-8 | |
dc.relation | O. Garcia-Rodriguez, E. Mousset, H. Olvera-Vargas, O. Lefebvre
Electrochemical treatment of highly concentrated wastewater: a review of experimental and modeling approaches from lab- to full-scale
Crit. Rev. Environ. Sci. Technol., 52 (2022), pp. 240-309, 10.1080/10643389.2020.1820428 | |
dc.relation | B.P. Chaplin
Critical review of electrochemical advanced oxidation processes for water treatment applications
Environ. Sci. Process. Impacts, 16 (2014), pp. 1182-1203, 10.1039/c3em00679d | |
dc.relation | F.L. Guzmán-Duque, R.E. Palma-Goyes, I. González, G. Peñuela, R.A. Torres-Palma
Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water
J. Hazard. Mater., 278 (2014), pp. 221-226, 10.1016/j.jhazmat.2014.05.076 | |
dc.relation | C.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales
Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes
Diam. Relat. Mater., 93 (2019), pp. 193-199, 10.1016/j.diamond.2019.02.018 | |
dc.relation | N.L. Pedersen, M. Nikbakht Fini, P.K. Molnar, J. Muff
Synergy of combined adsorption and electrochemical degradation of aqueous organics by granular activated carbon particulate electrodes
Sep. Purif. Technol., 208 (2019), pp. 51-58, 10.1016/j.seppur.2018.05.023 | |
dc.relation | M.R. Samarghandi, A. Ansari, A. Dargahi, A. Shabanloo, D. Nematollahi, M. Khazaei, H.Z. Nasab, Y. Vaziri
Enhanced electrocatalytic degradation of bisphenol A by graphite/β-PbO2 anode in a three-dimensional electrochemical reactor
J. Environ. Chem. Eng., 9 (2021), Article 106072, 10.1016/j.jece.2021.106072 | |
dc.relation | D. Liu
Water treatment by adsorption and electrochemical regeneration development of a liquid-lift reactor
The University of Manchester (2015) | |
dc.relation | J. Acuña-Bedoya, J.A. Comas-Cabrales, C.E. Alvarez-Pugliese, N. Marriaga-Cabrales
Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue
J. Environ. Chem. Eng., 8 (2020), Article 104074, 10.1016/j.jece.2020.104074 | |
dc.relation | O. Garcia-Rodriguez, A. Villot, H. Olvera-Vargas, C. Gerente, Y. Andres, O. Lefebvre
Impact of the saturation level on the electrochemical regeneration of activated carbon in a single sequential reactor
Carbon N. Y, 163 (2020), pp. 265-275, 10.1016/j.carbon.2020.02.041 | |
dc.relation | H.K. Jeswani, H. Gujba, N.W. Brown, E.P.L. Roberts, A. Azapagic
Removal of organic compounds from water: Life cycle environmental impacts and economic costs of the Arvia process compared to granulated activated carbon
J. Clean. Prod., 89 (2015), pp. 203-213, 10.1016/j.jclepro.2014.11.017 | |
dc.relation | N.W. Brown, E.P.L. Roberts
Combining adsorption with anodic oxidation as an innovative technique for removal and destruction of organics
Water Sci. Technol., 68 (2013), pp. 1216-1222, 10.2166/wst.2013.297 | |
dc.relation | M.D. Vedenyapina, D.A. Borisova, A.P. Simakova, L.P. Proshina, A.A. Vedenyapin
Adsorption of diclofenac sodium from aqueous solutions on expanded graphite
Solid Fuel Chem., 47 (2013), pp. 59-63, 10.3103/S0361521912060134 | |
dc.relation | D.M. Nevskaia, A.B. Fuertes, G. Marban
Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths
Carbon N. Y, 41 (2003), pp. 87-96, 10.1016/S0008-6223(02)00274-9 | |
dc.relation | Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang
Expanded graphite as superior anode for sodium-ion batteries
Nat. Commun., 5 (2014), pp. 1-10, 10.1038/ncomms5033 | |
dc.relation | W. Zheng, S.C. Wong
Electrical conductivity and dielectric properties of PMMA/expanded graphite composites
Compos. Sci. Technol., 63 (2003), pp. 225-235, 10.1016/S0266-3538(02)00201-4 | |
dc.relation | C.B. Beck
Physicochemical processes for water quality control
Wiley Interscience, John Wiley & Sons, New York (1973), 10.1002/aic.690190245 | |
dc.relation | J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman
Figures of merit for the technical development and application of advanced oxidation technologies for both electric and solar driven systems (IUPAC Technical Report)
Pure Appl. Chem., 73 (2001), pp. 627-637, 10.1351/pac200173040627 | |
dc.relation | B.H. Hameed, A.T.M. Din, A.L. Ahmad
Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies
J. Hazard. Mater., 141 (2007), pp. 819-825, 10.1016/j.jhazmat.2006.07.049 | |
dc.relation | J. Lach, A. Szymonik
Adsorption of diclofenac sodium from aqueous solutions on commercial activated carbons
Desalin. Water Treat., 186 (2020), pp. 418-429, 10.5004/dwt.2020.25567 | |
dc.relation | N. González-Ipia, K.C. Bolaños-Chamorro, J.D. Acuña-Bedoya, F. Machuca-Martínez, S.F. Castilla-Acevedo
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment
J. Environ. Chem. Eng., 8 (2020), Article 104336, 10.1016/j.jece.2020.104336 | |
dc.relation | C.J. Sun, L.Z. Sun, X.X. Sun
Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant
Ind. Eng. Chem. Res., 52 (2013), pp. 14251-14260, 10.1021/ie401571p | |
dc.relation | J.L. Sotelo, A.R. Rodríguez, M.M. Mateos, S.D. Hernández, S.A. Torrellas, J.G. Rodríguez
Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials
J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, 47 (2012), pp. 640-652, 10.1080/03601234.2012.668462 | |
dc.relation | C. Saucier, M.A. Adebayo, E.C. Lima, R. Catalu, P.S. Thue, L.D.T. Prola, F.M. Machado, F.A. Pavan, G.L. Dotto
Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents
289 (2015), pp. 18-27, 10.1016/j.jhazmat.2015.02.026 | |
dc.relation | S. Larous, A. Meniai
Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones
Int. J. Hydrog. Energy, 41 (2016), pp. 10380-10390, 10.1016/j.ijhydene.2016.01.096 | |
dc.relation | I. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano
New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater
Sep. Purif. Technol., 175 (2017), pp. 1-8, 10.1016/j.seppur.2016.11.020 | |
dc.relation | H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C.A. Zaror
Effect of ozone treatment on surface properties of activated carbon
Langmuir, 18 (2002), pp. 2111-2116, 10.1021/la010920a | |
dc.relation | N. Yuan, A. Zhao, Z. Hu, K. Tan, J. Zhang
Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review
Chemosphere, 287 (2022), Article 132227, 10.1016/j.chemosphere.2021.132227 | |
dc.relation | H. Valdes, M. Sanchez-Polo, C.A. Zaror
Effect of ozonation on the activated carbon surface chemical properties and on 2-mercaptobenzothiazole adsorption
Lat. Am. Appl. Res., 33 (2003), pp. 219-223 | |
dc.relation | B. Wang, W. Kong, H. Ma
Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode
J. Hazard. Mater., 146 (2007), pp. 295-301, 10.1016/j.jhazmat.2006.12.031 | |
dc.relation | A. El-Ghenymy, C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodríguez, E. Brillas
Electrochemical incineration of sulfanilic acid at a boron-doped diamond anode
Chemosphere, 87 (2012), pp. 1126-1133, 10.1016/j.chemosphere.2012.02.006 | |
dc.relation | G.W. Reade, A.H. Nahle, P. Bond, J.M. Friedrich, F.C. Walsh
Removal of cupric ions from acidic sulfate solution using reticulated vitreous carbon rotating cylinder electrodes
J. Chem. Technol. Biotechnol., 79 (2004), pp. 935-945, 10.1002/jctb.1076 | |
dc.relation | K.Y. Foo, B.H. Hameed
A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects
J. Hazard. Mater., 170 (2009), pp. 552-559, 10.1016/j.jhazmat.2009.05.057 | |
dc.relation | A. Fortuny, J. Font, A. Fabregat
Wet air oxidation of phenol using active carbon as catalyst
Appl. Catal. B, Environ., 19 (1998), 10.1016/S0926-3373(98)00072-1 | |
dc.relation | S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia
Heterogeneous Fenton catalysts based on activated carbon and related materials
ChemSusChem, 4 (2011), pp. 1712-1730, 10.1002/cssc.201100216 | |
dc.relation | R.V. McQuillan, G.W. Stevens, K.A. Mumford
The electrochemical regeneration of granular activated carbons: a review
J. Hazard. Mater., 355 (2018), pp. 34-49, 10.1016/j.jhazmat.2018.04.079 | |
dc.relation | W. Zhou, X. Meng, J. Gao, H. Zhao, G. Zhao, J. Ma
Electrochemical regeneration of carbon-based adsorbents: a review of regeneration mechanisms, reactors, and future prospects
Chem. Eng. J. Adv., 5 (2021), Article 100083, 10.1016/j.ceja.2020.100083 | |
dc.relation | W. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh
“Self-cleaning” electrochemical regeneration of dye-loaded activated carbon
Electrochem. Commun., 100 (2019), pp. 85-89, 10.1016/j.elecom.2019.01.025 | |
dc.relation | C.A. Martínez-Huitle, E. Brillas
Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review
Appl. Catal. B Environ., 87 (2009), pp. 105-145, 10.1016/j.apcatb.2008.09.017 | |
dc.relation | R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang
Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact
Appl. Catal. B, Environ., 203 (2017), pp. 515-525, 10.1016/j.apcatb.2016.10.057 | |
dc.relation | Y. Wang, L. Zhu, N. Ba, F. Gao, H. Xie
Effects of NH4F quantity on N-doping level, photodegradation and photocatalytic H2 production activities of N-doped TiO2 nanotube array films
Mater. Res. Bull., 86 (2017), pp. 268-276, 10.1016/j.materresbull.2016.10.031 | |
dc.relation | K. Yapsaklı, F. Çeçen, Ö. Aktaş, Z.S. Can
Impact of surface properties of granular activated carbon and preozonation on adsorption and desorption of natural organic matter
Environ. Eng. Sci., 26 (2009), pp. 489-500, 10.1089/ees.2008.0005 | |
dc.relation | M. Zhou, L. Lei
The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor
Chemosphere, 65 (2006), pp. 1197-1203, 10.1016/j.chemosphere.2006.03.054 | |
dc.relation | C. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March 12, 2014). | |
dc.relation | E. Brillas, S. Garcia-Segura, M. Skoumal, C. Arias
Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes
Chemosphere, 79 (2010), pp. 605-612, 10.1016/j.chemosphere.2010.03.004 | |
dc.relation | D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner
Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review
Water Res, 139 (2018), pp. 118-131, 10.1016/j.watres.2018.03.042 | |
dc.relation | N. Nippatlapalli, K. Ramakrishnan, L. Philip
Enhanced degradation of complex organic compounds in wastewater using different novel continuous flow non – Thermal pulsed corona plasma discharge reactors
Environ. Res., 203 (2022), Article 111807, 10.1016/j.envres.2021.111807 | |
dc.relation | M. of Environment and climate change, Guidance Document for Integrating UV ‐ based Advanced Oxidation Processes ( AOPs) Into Municipal Wastewater Treatment Plants
Showcasing Water Innov. Progr., 28 (2015)
〈http://civil.engineering.utoronto.ca/wp-content/uploads/2015/09/SWI_Guidance_Document_-_Final.pdf〉
accessed March 2, 2022 | |
dc.relation | P. Sathishkumar, R. Viswanathan
Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants
Renew. Sustain. Energy Rev., 55 (2016), pp. 426-454, 10.1016/j.rser.2015.10.139 | |
dc.relation | G. Coria, J.L. Nava, G. Carreño
Electrooxidation of diclofenac in synthetic pharmaceutical wastewater using an electrochemical reactor equipped with a boron doped diamond electrode
J. Mex. Chem. Soc., 58 (2014), pp. 303-308 | |
dc.relation | A. Yasmin, J.J. Luo, I.M. Daniel
Processing of expanded graphite reinforced polymer nanocomposites
Compos. Sci. Technol., 66 (2006), pp. 1182-1189, 10.1016/j.compscitech.2005.10.014 | |
dc.relation | H. Valdés, C.A. Zaror
Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach
Chemosphere, 65 (2006), pp. 1131-1136, 10.1016/j.chemosphere.2006.04.027 | |
dc.relation | Z. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan
ZnSn(OH)6 Photocatalyst for Methylene Blue Degradation: Electrolyte-Dependent Morphology and Performance
ChemistrySelect (2018), pp. 10849-10856, 10.1002/slct.201802195 | |
dc.relation | N. Gedam, N.R. Neti
Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: Treatment of recalcitrant chemical industry wastewater
J. Environ. Chem. Eng., 2 (2014), pp. 1527-1532, 10.1016/j.jece.2014.06.025 | |
dc.relation | 12 | |
dc.relation | 1 | |
dc.relation | 4 | |
dc.relation | 10 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights | © 2022 Elsevier Ltd. All rights reserved. | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.sciencedirect.com/science/article/pii/S2213343722009484 | |
dc.subject | 540 - Química y ciencias afines::546 - Química inorgánica | |
dc.subject | Boron doped diamond | |
dc.subject | Electro-oxidation | |
dc.subject | Adsorption | |
dc.subject | Granular activated carbon | |
dc.subject | Granular expanded graphite | |
dc.title | Degradation of diclofenac aqueous solutions in a 3D electrolytic reactor using carbon-based materials as pseudo third electrodes in fluidized bed, anodic and cathodic configurations | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |