dc.creator | Netto, Matias S. | |
dc.creator | georgin, jordana | |
dc.creator | Franco, Dison S.P. | |
dc.creator | Mallmann, Evandro S. | |
dc.creator | Foletto, Edson Luiz | |
dc.creator | Godinho, Marcelo | |
dc.creator | Pinto, Diana | |
dc.creator | Dotto, Guilherme Luiz | |
dc.date | 2022-04-29T13:03:26Z | |
dc.date | 2023 | |
dc.date | 2022-04-29T13:03:26Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T20:01:15Z | |
dc.date.available | 2023-10-03T20:01:15Z | |
dc.identifier | Netto, M.S., Georgin, J., Franco, D.S.P. et al. Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ Sci Pollut Res 29, 3672–3685 (2022). https://doi.org/10.1007/s11356-021-15366-4 | |
dc.identifier | 0944-1344 | |
dc.identifier | https://hdl.handle.net/11323/9136 | |
dc.identifier | https://doi.org/10.1007/s11356-021-15366-4 | |
dc.identifier | 10.1007/s11356-021-15366-4 | |
dc.identifier | 1614-7499 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9173911 | |
dc.description | In this work, a novel and effective hydrochar was prepared by hydrothermal treatment of Prunus serrulata bark to remove the pesticide atrazine in river waters. The hydrothermal treatment has generated hydrochar with a rough surface and small cavities, favoring the atrazine adsorption. The adsorption equilibrium time was not influenced by different atrazine concentrations used, being reached after 240 min. The Elovich adsorption kinetic model presented the best adjustment to the kinetic data. The Langmuir model presented the greatest compliance to the isotherm data and indicated a higher affinity between atrazine and hydrochar, reaching a maximum adsorption capacity of 63.35 mg g-1. Thermodynamic parameters showed that the adsorption process was highly spontaneous, endothermic, and favorable, with a predominance of physical attraction forces. In treating three real river samples containing atrazine, the adsorbent showed high removal efficiency, being above 70 %. The hydrochar from Prunus serrulata bark waste proved highly viable to remove atrazine from river waters due to its high efficiency and low precursor material cost. | |
dc.format | 1 página | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Springer Science + Business Media | |
dc.publisher | Germany | |
dc.relation | Environmental Science and Pollution Research | |
dc.relation | Aksu Z, Tatli AI, Tunç Ö (2008) A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters. Chem Eng J 142:23–39. https://doi.org/10.1016/j.cej.2007.11.005 | |
dc.relation | Alahabadi A, Moussavi G (2017) Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: parametric experiments and kinetics, equilibrium and thermodynamic modeling. J Mol Liq 242:40–52. https://doi.org/10.1016/j.molliq.2017.06.116 | |
dc.relation | Amézquita-Marroquín CP, Torres-Lozada P, Giraldo L, Húmpola PD, Rivero E, Poon PS, Matos J, Moreno-Piraján JC (2020) Sustainable production of nanoporous carbons: kinetics and equilibrium studies in the removal of atrazine. J Colloid Interface Sci 562:252–267. https://doi.org/10.1016/j.jcis.2019.12.026 | |
dc.relation | Atkins PW, De Paula J (2018) Atkins’ Physical Chemistry, 11th Ed. Oxford Univ Press 908 | |
dc.relation | Chan KH, Chu W (2005) Model applications and mechanism study on the degradation of atrazine by Fenton’s system. J Hazard Mater 118:227–237. https://doi.org/10.1016/j.jhazmat.2004.11.008 | |
dc.relation | Dalmora AC, Ramos C, Oliveira M, Teixeira E, Kautzmann R, Taffarel S, De Brum I, Silva LF (2016) Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes. Sci Total Environ 539:560–565. https://doi.org/10.1016/j.scitotenv.2015.08.141 | |
dc.relation | Deng J, Li X, Wei X, Liu Y, Liang J, Tang N, Song B, Chen X, Cheng X (2019) Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: adsorption behavior and mechanism. Bioresour Technol 290:121765. https://doi.org/10.1016/j.biortech.2019.121765 | |
dc.relation | Dombek T, Davis D, Stine J, Klarup D (2004) Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5- triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,3,5-triazine) by zero valent iron and e. Environ Pollut 129:267–275. https://doi.org/10.1016/j.envpol.2003.10.008 | |
dc.relation | Eibisch N, Schroll R, Fuß R, Mikutta R, Helfrich M, Flessa H (2015) Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil. Chemosphere 119:155–162. https://doi.org/10.1016/j.chemosphere.2014.05.059 | |
dc.relation | Elovich SY, Larionov OG (1962) Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 11:198–203. https://doi.org/10.1007/BF00908017 | |
dc.relation | Fernandes Neto M, Sarcinelli P (2009) Agrotóxicos em água para consumo humano: uma abordagem de avaliação de risco e contribuição o processo de atualização da legislação brasileira. Eng Sanit Amb 14:69–78. https://doi.org/10.1590/s1413-41522009000100008 | |
dc.relation | Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57U:385–470. https://doi.org/10.1515/zpch-1907-5723 | |
dc.relation | Gao Y, Jiang Z, Li J, Xie W, Jiang Q, Bi M, Zhang Y (2019) A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust. Environ Res 172:561–568. https://doi.org/10.1016/j.envres.2019.03.010 | |
dc.relation | Georgin J, Drumm FC, Grassi P, Franco D, Allasia D, Dotto GL (2018) Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents. Water Sci Technol 78:1693–1703. https://doi.org/10.2166/wst.2018.448 | |
dc.relation | Georgin J, Franco DSP, Grassi P, Tonato D, Piccilli DGA, Meili L, Dotto GL (2019) Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents. Environ Sci Pollut Res 26:19207–19219. https://doi.org/10.1007/s11356-019-05321-9 | |
dc.relation | Georgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environ Sci Pollut Res 27:20831–20843. https://doi.org/10.1007/s11356-020-08496-8 | |
dc.relation | Goli A, Alinezhad H, Ganji MD (2020) Theoretical insights into the performance of graphene derivatives, h-BN and BNC heterostructures in the adsorption and elimination of atrazine: an all-electron DFT study. Diam Relat Mater 108:107967. https://doi.org/10.1016/j.diamond.2020.107967 | |
dc.relation | Grundgeiger E, Lim YH, Frost RL, Ayoko GA, Xi Y (2015) Application of organo-beidellites for the adsorption of atrazine. Appl Clay Sci 105–106:252–258. https://doi.org/10.1016/j.clay.2015.01.003 | |
dc.relation | Gupta A, Yadav R, Devi P (2011a) Removal of hexavalent chromium using activated coconut shell and activated coconut coir as low cost adsorbent. IIOAB J 2:8–12 | |
dc.relation | Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011b) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45:4047–4055. https://doi.org/10.1016/j.watres.2011.05.016 | |
dc.relation | Hernandes PT, Oliveira MLS, Georgin J, Franco DSP, Allasia D, Dotto GL (2019) Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus). Environ Sci Pollut Res 26:31924–31933. https://doi.org/10.1007/s11356-019-06353-x | |
dc.relation | Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5 | |
dc.relation | Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008 | |
dc.relation | Huang H, Niu Z, Shi R, Tang J, Lv L, Wang J, Fan Y (2020) Thermal oxidation activation of hydrochar for tetracycline adsorption: the role of oxygen concentration and temperature. Bioresour Technol 306:123096. https://doi.org/10.1016/j.biortech.2020.123096 | |
dc.relation | Jang HM, Kan E (2019) A novel hay-derived biochar for removal of tetracyclines in water. Bioresour Technol 274:162–172. https://doi.org/10.1016/j.biortech.2018.11.081 | |
dc.relation | Jawad AH, Rashid RA, Ishak MAM, Wilson LD (2016) Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 57:25194–25206. https://doi.org/10.1080/19443994.2016.1144534 | |
dc.relation | Jia Y, Wang R, Fane AG (2006) Atrazine adsorption from aqueous solution using powdered activated carbon - improved mass transfer by air bubbling agitation. Chem Eng J 116:53–59. https://doi.org/10.1016/j.cej.2005.10.014 | |
dc.relation | Kazak O, Tor A (2020) In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(II) in aqueous solution. J Hazard Mater 393:122391. https://doi.org/10.1016/j.jhazmat.2020.122391 | |
dc.relation | Kazak O, Eker YR, Bingol H, Tor A (2018) Preparation of chemically-activated high surface area carbon from waste vinasse and its efficiency as adsorbent material. J Mol Liq 272:189–197. https://doi.org/10.1016/j.molliq.2018.09.085 | |
dc.relation | Keawkumay C, Rongchapo W, Sosa N, Suthirakun S, Koleva IZ, Aleksandrov HA, Vayssilov GN, Wittayakun J (2019) Paraquat adsorption on NaY zeolite at various Si/Al ratios: a combined experimental and computational study. Mater Chem Phys 238:121824. https://doi.org/10.1016/j.matchemphys.2019.121824 | |
dc.relation | Khalfaoui M, El Ghali A, Aguir C et al (2015) Study on adsorption of herbicide onto functionalized cellulose extracted from Juncus acutus L. plant: Experimental results and theoretical modeling. Ind Crop Prod 67:169–178. https://doi.org/10.1016/j.indcrop.2015.01.032 | |
dc.relation | Knani S, Mathlouthi M, Ben LA (2007) Modeling of the psychophysical response curves using the grand canonical ensemble in statistical physics. Food Biophys 2:183–192. https://doi.org/10.1007/s11483-007-9042-7 | |
dc.relation | Lagergren SY (1898) Zur Theorie der sogenannten Adsorption | |
dc.relation | Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004 | |
dc.relation | Largitte L, Pasquier R (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109:495–504. https://doi.org/10.1016/j.cherd.2016.02.006 | |
dc.relation | Lasserre JP, Fack F, Revets D, Planchon S, Renaut J, Hoffmann L, Gutleb AC, Muller CP, Bohn T (2009) Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells. J Proteome Res 8:5485–5496. https://doi.org/10.1021/pr900480f | |
dc.relation | León-Mejía G, Machado MN, Okuro RT, Silva LF, Telles C, Dias J, Niekraszewicz L, Da Silva J, Henriques JAP, Zin WA (2018) Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci Total Environ 625:589–599. https://doi.org/10.1016/j.scitotenv.2017.12.283 | |
dc.relation | Li X, Wei Y, Xu J, Xu N, He Y (2018) Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on FTIR macro- and micro-spectroscopy coupled with chemometrics. Biotechnol Biofuels 11:1–16. https://doi.org/10.1186/s13068-018-1251-4 | |
dc.relation | Li Y, Tsend N, Li TK, Liu H, Yang R, Gai X, Wang H, Shan S (2019) Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals. Bioresour Technol 273:136–143. https://doi.org/10.1016/j.biortech.2018.10.056 | |
dc.relation | Li H, Miao Q, Chen Y, Yin M, Qi H, Yang M, Deng Q, Wang S (2020) Modified carbon spheres as universal materials for adsorption of cationic harmful substances (paraquat and dyes) in water. Microporous Mesoporous Mater 297:110040. https://doi.org/10.1016/j.micromeso.2020.110040 | |
dc.relation | Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048 | |
dc.relation | Liu Y, Shen L (2008) A general rate law equation for biosorption. Process Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003 | |
dc.relation | Liu QS, Zheng T, Wang P, Jiang JP, Li N (2010) Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem Eng J 157:348–356. https://doi.org/10.1016/j.cej.2009.11.013 | |
dc.relation | Liu H, Chen W, Liu C, Liu Y, Dong C (2014) Magnetic mesoporous clay adsorbent: Preparation, characterization and adsorption capacity for atrazine. Microporous Mesoporous Mater 194:72–78. https://doi.org/10.1016/j.micromeso.2014.03.038 | |
dc.relation | Liu Y, Ma S, Chen J (2018) A novel pyro-hydrochar via sequential carbonization of biomass waste: preparation, characterization and adsorption capacity. J Clean Prod 176:187–195. https://doi.org/10.1016/j.jclepro.2017.12.090 | |
dc.relation | Liu Y, Sohi SP, Jing F, Chen J (2019) Oxidative ageing induces change in the functionality of biochar and hydrochar: mechanistic insights from sorption of atrazine. Environ Pollut 249:1002–1010. https://doi.org/10.1016/j.envpol.2019.03.035 | |
dc.relation | Lonappan L, Rouissi T, Kaur Brar S, Verma M, Surampalli RY (2018) An insight into the adsorption of diclofenac on different biochars: mechanisms, surface chemistry, and thermodynamics. Bioresour Technol 249:386–394. https://doi.org/10.1016/j.biortech.2017.10.039 | |
dc.relation | Luo H, Zhang Y, Xie Y, Li Y, Qi M, Ma R, Yang S, Wang Y (2019) Iron-rich microorganism-enabled synthesis of magnetic biocarbon for efficient adsorption of diclofenac from aqueous solution. Bioresour Technol 282:310–317. https://doi.org/10.1016/j.biortech.2019.03.028 | |
dc.relation | Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131. https://doi.org/10.1016/j.jhazmat.2011.06.020 | |
dc.relation | Magdziarz A, Wilk M, Wądrzyk M (2020) Pyrolysis of hydrochar derived from biomass – experimental investigation. Fuel:267. https://doi.org/10.1016/j.fuel.2020.117246 | |
dc.relation | Martini BK, Daniel TG, Corazza MZ, De Carvalho AE (2018) Methyl orange and tartrazine yellow adsorption on activated carbon prepared from boiler residue: kinetics, isotherms, thermodynamics studies and material characterization. J Environ Chem Eng 6:6669–6679. https://doi.org/10.1016/j.jece.2018.10.013 | |
dc.relation | Méndez-Díaz JD, Abdel daiem MM, Rivera-Utrilla J, Sánchez-Polo M, Bautista-Toledo I (2012) Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons. J Colloid Interface Sci 369:358–365. https://doi.org/10.1016/j.jcis.2011.11.073 | |
dc.relation | Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z (2018) A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manag 227:395–405. https://doi.org/10.1016/j.jenvman.2018.08.069 | |
dc.relation | Mondal S, Majumder SK (2019) Honeycomb-like porous activated carbon for efficient copper (II) adsorption synthesized from natural source: kinetic study and equilibrium isotherm analysis. J Environ Chem Eng 7:103236. https://doi.org/10.1016/j.jece.2019.103236 | |
dc.relation | Moussavi G, Khosravi R (2011) The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chem Eng Res Des 89:2182–2189. https://doi.org/10.1016/j.cherd.2010.11.024 | |
dc.relation | Muir K, Rattanamongkolgul S, Smallman-Raynor M, Thomas M, Downer S, Jenkinson C (2004) Breast cancer incidence and its possible spatial association with pesticide application in two counties of England. Public Health 118:513–520. https://doi.org/10.1016/j.puhe.2003.12.019 | |
dc.relation | Nagarajan D, Varada OM, Venkatanarasimhan S (2020) Carbon dots coated on amine functionalized cellulose sponge for the adsorption of the toxic herbicide atrazine. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.08.071 | |
dc.relation | Nakbi A, Bouzid M, Ayachi F, Bouaziz N, Ben Lamine A (2020) Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on β-cyclodextrin and a putative biological sucrose adsorption from sucrose d. J Mol Liq 298:111950. https://doi.org/10.1016/j.molliq.2019.111950 | |
dc.relation | Nam SW, Choi DJ, Kim SK, Her N, Zoh KD (2014) Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J Hazard Mater 270:144–152. https://doi.org/10.1016/j.jhazmat.2014.01.037 | |
dc.relation | Nasuha N, Hameed BH, Din ATM (2010) Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J Hazard Mater 175:126–132. https://doi.org/10.1016/j.jhazmat.2009.09.138 | |
dc.relation | Nizamuddin S, Qureshi SS, Baloch HA, Siddiqui MTH, Takkalkar P, Mubarak NM, Dumbre DK, Griffin GJ, Madapusi S, Tanksale A (2019) Microwave hydrothermal carbonization of rice straw: Optimization of process parameters and upgrading of chemical, fuel, structural and thermal properties. Materials (Basel) 12. https://doi.org/10.3390/ma12030403 | |
dc.relation | Nogueira EN, Dores EFGC, Pinto AA, Amorim RSS, Ribeiro ML, Lourencetti C (2012) Currently used pesticides in water matrices in central-western. J Braz Chem Soc 23:1476–1487. https://doi.org/10.1590/S0103-50532012005000008 | |
dc.relation | Pelekani C, Snoeyink VL (2000) Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution. Carbon 38:1423–1436. https://doi.org/10.1016/S0008-6223(99)00261-4 | |
dc.relation | Ramos CG, Querol X, Oliveira MLS, Pires K, Kautzmann RM, Silva LF (2015) A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Sci Total Environ 512-513:371–380. https://doi.org/10.1016/j.scitotenv.2014.12.070 | |
dc.relation | Rodriguez-Iruretagoiena A, De Vallejuelo S, De Diego A, De Leão F, De Medeiros D, Oliveira M, Taffarel S, Arana G, Madariaga J, Silva LF (2016) The mobilization of hazardous elements after a tropical storm event in a polluted estuary. Sci Total Environ 565:721–729. https://doi.org/10.1016/j.scitotenv.2016.05.024 | |
dc.relation | Román S, Valente Nabais JM, Ledesma B, González JF, Laginhas C, Titirici MM (2013) Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater 165:127–133. https://doi.org/10.1016/j.micromeso.2012.08.006 | |
dc.relation | Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13. https://doi.org/10.1016/j.desal.2011.07.019 | |
dc.relation | Sellaoui L, Mechi N, Lima ÉC, Dotto GL, Ben Lamine A (2017) Adsorption of diclofenac and nimesulide on activated carbon: statistical physics modeling and effect of adsorbate size. J Phys Chem Solids 109:117–123. https://doi.org/10.1016/j.jpcs.2017.05.019 | |
dc.relation | Sellaoui L, Mendoza-Castillo DI, Reynel-Ávila HE, Bonilla-Petriciolet A, Ben Lamine A, Erto A (2018) A new statistical physics model for the ternary adsorption of Cu2+, Cd2+ and Zn2+ ions on bone char: Experimental investigation and simulations. Chem Eng J 343:544–553. https://doi.org/10.1016/j.cej.2018.03.033 | |
dc.relation | Shao Y, Tan H, Shen D, Zhou Y, Jin Z, Zhou D, Lu W, Long Y (2020) Synthesis of improved hydrochar by microwave hydrothermal carbonization of green waste. Fuel 266:117146. https://doi.org/10.1016/j.fuel.2020.117146 | |
dc.relation | Sharma G, Thakur B, Kumar A, Sharma S, Naushad M, Stadler FJ (2020) Atrazine removal using chitin-cl-poly(acrylamide-co-itaconic acid) nanohydrogel: isotherms and pH responsive nature. Carbohydr Polym 241:116258. https://doi.org/10.1016/j.carbpol.2020.116258 | |
dc.relation | Sills DL, Gossett JM (2012) Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng 109:353–362. https://doi.org/10.1002/bit.23314 | |
dc.relation | Sun K, Gao B, Zhang Z, Zhang G, Zhao Y, Xing B (2010) Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment. Environ Pollut 158:3520–3526. https://doi.org/10.1016/j.envpol.2010.08.022 | |
dc.relation | Tan G, Sun W, Xu Y, Wang H, Xu N (2016) Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour Technol 211:727–735. https://doi.org/10.1016/j.biortech.2016.03.147 | |
dc.relation | Tao QH, Tang HX (2004) Effect of dye compounds on the adsorption of atrazine by natural sediment. Chemosphere 56:31–38. https://doi.org/10.1016/j.chemosphere.2004.02.029 | |
dc.relation | Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sust Energ Rev 40:673–687. https://doi.org/10.1016/j.rser.2014.07.216 | |
dc.relation | Tóth J (2002) Adsorption: theory, modeling, and analysis. Marcel Dekker, Inc | |
dc.relation | Vithanage M, Mayakaduwa SS, Herath I, Ok YS, Mohan D (2016) Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere 150:781–789. https://doi.org/10.1016/j.chemosphere.2015.11.002 | |
dc.relation | Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071 | |
dc.relation | Wang S, Kwak JH, Islam MS, Naeth MA, Gamal El-Din M, Chang SX (2020) Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Sci Total Environ 712:136538. https://doi.org/10.1016/j.scitotenv.2020.136538 | |
dc.relation | Wei X, Wu Z, Du C, Wu Z, Ye BC, Cravotto G (2017) Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating. J Taiwan Inst Chem Eng 77:257–262. https://doi.org/10.1016/j.jtice.2017.04.004 | |
dc.relation | Wekoye JN, Wanyonyi WC, Wangila PT, Tonui MK (2020) Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environ Chem Ecotoxicol 2:24–31. https://doi.org/10.1016/j.enceco.2020.01.004 | |
dc.relation | Xiao K, Liu H, Li Y, Yang G, Wang Y, Yao H (2020) Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chem Eng J 382:122997. https://doi.org/10.1016/j.cej.2019.122997 | |
dc.relation | Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321:30–38. https://doi.org/10.1016/j.jcis.2008.01.047 | |
dc.relation | Yan W, Zhang H, Sheng K, Mustafa AM, Yu Y (2018) Evaluation of engineered hydrochar from KMnO4 treated bamboo residues: physicochemical properties, hygroscopic dynamics, and morphology. Bioresour Technol 250:806–811. https://doi.org/10.1016/j.biortech.2017.11.052 | |
dc.relation | Yazidi A, Atrous M, Edi Soetaredjo F, Sellaoui L, Ismadji S, Erto A, Bonilla-Petriciolet A, Luiz Dotto G, Ben Lamine A (2020) Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis. Chem Eng J:379. https://doi.org/10.1016/j.cej.2019.122320 | |
dc.relation | Ye S, Cheng M, Zeng G, Tan X, Wu H, Liang J, Shen M, Song B, Liu J, Yang H, Zhang Y (2020a) Insights into catalytic removal and separation of attached metals from natural-aged microplastics by magnetic biochar activating oxidation process. Water Res 179:115876. https://doi.org/10.1016/j.watres.2020.115876 | |
dc.relation | Ye S, Zeng G, Tan X, Wu H, Liang J, Song B, Tang N, Zhang P, Yang Y, Chen Q, Li X (2020b) Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer. Appl Catal B Environ 269:118850. https://doi.org/10.1016/j.apcatb.2020.118850 | |
dc.relation | Yue L, Ge CJ, Feng D, Yu H, Deng H, Fu B (2017) Adsorption–desorption behavior of atrazine on agricultural soils in China. J Environ Sci (China) 57:180–189. https://doi.org/10.1016/j.jes.2016.11.002 | |
dc.relation | Zhang Y, Cao B, Zhao L, Sun L, Gao Y, Li J, Yang F (2018) Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl Surf Sci 427:147–155. https://doi.org/10.1016/j.apsusc.2017.07.237 | |
dc.relation | Zhou N, Chen H, Feng Q, Yao D, Chen H, Wang H, Zhou Z, Li H, Tian Y, Lu X (2017) Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J Clean Prod 165:221–230. https://doi.org/10.1016/j.jclepro.2017.07.111 | |
dc.relation | Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J (2014) Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour Technol 154:209–214. https://doi.org/10.1016/j.biortech.2013.12.019 | |
dc.relation | 1 | |
dc.relation | 1 | |
dc.relation | 3 | |
dc.relation | 29 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights | © 2022 Springer Nature Switzerland AG. Part of Springer Nature. | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://link.springer.com/article/10.1007/s11356-021-15366-4 | |
dc.subject | Adsorption | |
dc.subject | Atrazine | |
dc.subject | Hydrochar | |
dc.subject | Prunus serrulata | |
dc.subject | River water | |
dc.title | Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/draft | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |