dc.creatorPedraza Yepes, Cristian Antonio
dc.creatorGonzález-Coneo, Jorge
dc.creatorMancera-Trejos, Carlos A.
dc.creatorFlorez-Sarmiento, Luis E.
dc.creatorTORRES DIAZ, GABRIEL AGENOR
dc.creatorGonzalez Olier, Camilo Andres
dc.date2020-09-18T20:22:51Z
dc.date2020-09-18T20:22:51Z
dc.date2020-07
dc.date.accessioned2023-10-03T20:01:00Z
dc.date.available2023-10-03T20:01:00Z
dc.identifier1819-6608
dc.identifierhttps://hdl.handle.net/11323/7115
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173866
dc.descriptionThis article deals with the design, simulation and construction of a fuel storage tank-chassis and a lifting system coupled as a single unit to a Cummins QSK19 engine driven HL260m pump that can guarantee an operating autonomy of up to 12 continuous hours and can be transported to different locations by means of lifting systems. For the mechanical design the recommendations of the American Institute of Steel Construction (AISC) and the application of the failure criteria for Von Mises ductile materials or Maximum Energy Distortion were used. For the dimensioning of the storage tank, the average consumption stipulated by the manufacturer was used and the simulations were performed with SolidWorks®. A functional and safe system that can be used in on-site applications was achieved.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] Caterpillar. 2012. Diesel fuels & diesel fuel systems, Caterpillar Inc., United States.
dc.relation[2] American national standards institute, ANSI/AISC 360-10 specification for Steel Constructions, (2016).
dc.relation[3] Cummins Inc, QSK19 for Mining (EmissionsCertified), Cummins Inc, (2015) Available: http://cumminsengines.com/showcaseitem.aspx?id=156&title=QSK19+for+Mining+%28E missionsCertified%29&Filters=3%3ATier+2+%2F+Stage+II|4 %3A%3E453%3C1059#specifications.
dc.relation[4] R. Hibbeler. 2006. Mecánica de materiales, Mexico: Pearson Prentice Hall, sixth edition.
dc.relation[5] R. Budynas y K. Nisbett. 2008. Diseño en ingeniería mecánica de Shigley, Mexico: Mc Graw Hill, eighth edition.
dc.relation[6] Ipac-acero. 2018. Avaible: http://www.ipacacero.com/assets/img/upload/big/5ada62cf4a95596a1 3062ee6ae2cb279.pdf
dc.relation[7] R. A. Mireles. 1992. Teoría de falla y sus aplicaciones, Tesis de maestro en ciencias, San Nicolás de Los Garza: Universidad de nuevo León.
dc.relation[8] Bulian G. and Cercos-Pita J. 2918. Co-simulation of ship motions and sloshing in tanks. Ocean Engineering.
dc.relation[9] R. A. Ibrahim. 2015. Liquid Sloshing Dynamics, Cambridge: Cambridge University Press.
dc.relation[10]Arora S. and Vasudevan S. 2017. Analysis of sloshing-induced loads on the fuel tank structure. Chalmers University of Technology.
dc.relation[11]X.-s. L. Y.-y. R. Y.-n. W. J. Xue-lian Zheng. 2013. «Effects of Transverse Baffle Design on Reducing Liquid Sloshing in Partially Filled Tank Vehicles» Mathematical Problems in Engineering. I: 1-13.
dc.relation[12]R. T. K. Raj y T. B. a. G. Edison. 2014. «Design Of Fuel Tank Baffles To Reduce Kinetic Energy». ARPN Journal of Engineering and Applied Sciences. 9(3): 244-249.
dc.relation[13]R. A. Ibrahim. 2015. Liquid Sloshing Dynamics, Cambridge: Cambridge University Press.
dc.relation[14]C. Mataix. 2005. Mecánica de Fluidos y Maquinas Hidráulicas, Mexico: Alfaomega-Oxford, second edition.
dc.relation[15]I. Shames. 1995. Mecánica de Fluidos. McGraw-Hill, Mexico: McGraw-Hill, tercera edición.
dc.relation[16]Sauret A., Boulogne F., Cappello J., Dressaire E. and Stone H. 2105. Damping of liquid sloshing by foams.
dc.relation[17]Abdollahzadeh Jamalabad, M., Ho-Huu, V. and Khang Nguyen T. 2018. Optimal Design of Circular Baffles on Sloshing in a Rectangular Tank Horizontally Coupled by Structure. Water.
dc.relation[18]Z. Saoudi, Z. Hafsia y K. Maalel. 2013. «Dumping Effects of Submerged Vertical Baffles and Slat Screen on Forced Sloshing Motion». Journal of Water Resource and Hydraulic Engineering. 2(2): 51-60.
dc.relation[19]Cosmpetrol ltda. 2012. Procedimiento para prueba hidrostática de estanqueidad en tanques de almacenamiento. Bogotá.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceARPN Journal of Engineering and Applied Sciences
dc.sourcehttp://www.arpnjournals.org/jeas/research_papers/rp_2020/jeas_0720_8248.pdf
dc.subjectSimulation
dc.subjectMechanical design
dc.subjectConstruction
dc.subjectChassis
dc.subjectCentrifugal pump
dc.titleDesign and construction of tank-chassis and lifting structure for centrifugal pump HL260 M powered by a Diesel Engine
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución